Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data
- URL: http://arxiv.org/abs/2411.05729v1
- Date: Fri, 08 Nov 2024 17:40:43 GMT
- Title: Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data
- Authors: William Cappelletti, Pascal Frossard,
- Abstract summary: We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
- Score: 49.77103348208835
- License:
- Abstract: Representing and exploiting multivariate signals require capturing complex relations between variables. We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians. We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem. Our new formulation allows to include a priori knowledge on signal properties, as well as on underlying graphs and their coefficients. We show the capability of our method to reconstruct graphs from signals in multiple synthetic settings, where our model outperforms previous baselines. Then, we exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods relying on many more features.
Related papers
- Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals [18.45931641798935]
This paper introduces Polynomial Graphical Lasso (PGL), a new approach to learning graph structures from nodal signals.
Our key contribution lies in the signals as Gaussian and stationary on the graph, enabling the development of a graph-learning lasso.
arXiv Detail & Related papers (2024-04-03T10:19:53Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Joint Inference of Multiple Graphs from Matrix Polynomials [34.98220454543502]
Inferring graph structure from observations on the nodes is an important and popular network science task.
We study the problem of jointly inferring multiple graphs from the observation of signals at their nodes.
We propose a convex optimization method along with sufficient conditions that guarantee the recovery of the true graphs.
arXiv Detail & Related papers (2020-10-16T02:45:15Z) - Kernel-based Graph Learning from Smooth Signals: A Functional Viewpoint [15.577175610442351]
We propose a novel graph learning framework that incorporates the node-side and observation-side information.
We use graph signals as functions in the reproducing kernel Hilbert space associated with a Kronecker product kernel.
We develop a novel graph-based regularisation method which, when combined with the Kronecker product kernel, enables our model to capture both the dependency explained by the graph and the dependency due to graph signals.
arXiv Detail & Related papers (2020-08-23T16:04:23Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.