Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals
- URL: http://arxiv.org/abs/2404.02621v1
- Date: Wed, 3 Apr 2024 10:19:53 GMT
- Title: Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals
- Authors: Andrei Buciulea, Jiaxi Ying, Antonio G. Marques, Daniel P. Palomar,
- Abstract summary: This paper introduces Polynomial Graphical Lasso (PGL), a new approach to learning graph structures from nodal signals.
Our key contribution lies in the signals as Gaussian and stationary on the graph, enabling the development of a graph-learning lasso.
- Score: 18.45931641798935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Polynomial Graphical Lasso (PGL), a new approach to learning graph structures from nodal signals. Our key contribution lies in modeling the signals as Gaussian and stationary on the graph, enabling the development of a graph-learning formulation that combines the strengths of graphical lasso with a more encompassing model. Specifically, we assume that the precision matrix can take any polynomial form of the sought graph, allowing for increased flexibility in modeling nodal relationships. Given the resulting complexity and nonconvexity of the resulting optimization problem, we (i) propose a low-complexity algorithm that alternates between estimating the graph and precision matrices, and (ii) characterize its convergence. We evaluate the performance of PGL through comprehensive numerical simulations using both synthetic and real data, demonstrating its superiority over several alternatives. Overall, this approach presents a significant advancement in graph learning and holds promise for various applications in graph-aware signal analysis and beyond.
Related papers
- Scalable Implicit Graphon Learning [25.015678499211404]
We propose a scalable method that combines implicit neural representations (INRs) and graph neural networks (GNNs) to estimate a graphon from observed graphs.
We evaluate SIGL in synthetic and real-world graphs, showing that it outperforms existing methods and scales effectively to larger graphs.
arXiv Detail & Related papers (2024-10-22T22:44:24Z) - Cross-View Graph Consistency Learning for Invariant Graph
Representations [16.007232280413806]
We propose a cross-view graph consistency learning (CGCL) method that learns invariant graph representations for link prediction.
This paper empirically and experimentally demonstrates the effectiveness of the proposed CGCL method.
arXiv Detail & Related papers (2023-11-20T14:58:47Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Learning Product Graphs from Spectral Templates [3.04585143845864]
Graph Learning (GL) is at the core of inference and analysis of connections in data mining and machine learning (ML)
We propose learning product (high dimensional) graphs from product spectral templates with significantly reduced complexity.
In contrast to the rare current approaches, our approach can learn all types of product graphs without knowing the type of graph products.
arXiv Detail & Related papers (2022-11-05T12:28:11Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Joint Inference of Multiple Graphs from Matrix Polynomials [34.98220454543502]
Inferring graph structure from observations on the nodes is an important and popular network science task.
We study the problem of jointly inferring multiple graphs from the observation of signals at their nodes.
We propose a convex optimization method along with sufficient conditions that guarantee the recovery of the true graphs.
arXiv Detail & Related papers (2020-10-16T02:45:15Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.