論文の概要: Using Language Models to Disambiguate Lexical Choices in Translation
- arxiv url: http://arxiv.org/abs/2411.05781v1
- Date: Fri, 08 Nov 2024 18:48:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:42.789641
- Title: Using Language Models to Disambiguate Lexical Choices in Translation
- Title(参考訳): 言語モデルを用いた翻訳における語彙選択の曖昧化
- Authors: Josh Barua, Sanjay Subramanian, Kayo Yin, Alane Suhr,
- Abstract要約: 翻訳において、ソース言語の1つの単語で表される概念は、ターゲット言語で複数のバリエーションを持つことができる。
DTAiLSは1,377の文対のデータセットで、英語から翻訳する際の言語間概念の変化を示す。
- 参考スコア(独自算出の注目度): 13.795280427753648
- License:
- Abstract: In translation, a concept represented by a single word in a source language can have multiple variations in a target language. The task of lexical selection requires using context to identify which variation is most appropriate for a source text. We work with native speakers of nine languages to create DTAiLS, a dataset of 1,377 sentence pairs that exhibit cross-lingual concept variation when translating from English. We evaluate recent LLMs and neural machine translation systems on DTAiLS, with the best-performing model, GPT-4, achieving from 67 to 85% accuracy across languages. Finally, we use language models to generate English rules describing target-language concept variations. Providing weaker models with high-quality lexical rules improves accuracy substantially, in some cases reaching or outperforming GPT-4.
- Abstract(参考訳): 翻訳において、ソース言語の1つの単語で表される概念は、ターゲット言語で複数のバリエーションを持つことができる。
語彙選択のタスクは、どのバリエーションがソーステキストに最も適しているかを特定するためにコンテキストを使用する必要がある。
DTAiLSは1,377の文対のデータセットで、英語から翻訳する際の言語間概念の変化を示す。
我々は,DTAiLSを用いた最近のLLMとニューラルマシン翻訳システムについて,最高の性能モデルであるGPT-4を用いて,67~85%の精度で評価した。
最後に、言語モデルを用いて、ターゲット言語概念のバリエーションを記述する英語ルールを生成する。
高品質の語彙規則を持つ弱いモデルを提供することで精度が大幅に向上し、場合によってはGPT-4に到達または性能が向上する。
関連論文リスト
- Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
サブワードトークン化器で観測される語彙表現と語彙重複の質を評価するための新しい基準を提案する。
以上の結果から,言語間の語彙の重複は,特定の下流課題に支障を来す可能性があることが示唆された。
論文 参考訳(メタデータ) (2023-05-26T18:06:49Z) - MultiTACRED: A Multilingual Version of the TAC Relation Extraction
Dataset [6.7839993945546215]
そこで本研究では,9つの言語群から12種類の言語を対象とするMultiTACREDデータセットについて紹介する。
翻訳とアノテーションのプロジェクションの品質を分析し、エラーカテゴリを特定し、訓練済みの単言語および多言語言語モデルの微調整を実験的に評価する。
対象言語の多くにおいて、モノリンガルREモデルの性能は英語オリジナルに匹敵するものであり、英語とターゲット言語データの組み合わせで訓練された多言語モデルは、モノリンガルモデルよりも優れている。
論文 参考訳(メタデータ) (2023-05-08T09:48:21Z) - Translate to Disambiguate: Zero-shot Multilingual Word Sense
Disambiguation with Pretrained Language Models [67.19567060894563]
事前訓練された言語モデル(PLM)は、豊富な言語間知識を学習し、多様なタスクでうまく機能するように微調整することができる。
C-WLT(Contextual Word-Level Translation)を用いた言語間単語感覚の捉え方の検討を行った。
モデルのサイズが大きくなるにつれて、PLMはより言語間単語認識の知識をエンコードし、WLT性能を改善するためのコンテキストを良くする。
論文 参考訳(メタデータ) (2023-04-26T19:55:52Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
複数の言語にまたがって英語データセットを転送するTranslation-trainパラダイムは、タスク固有の多言語モデルをトレーニングする上で重要な要素である。
本稿では,多言語意味解析の課題を考察し,英語データセットを複数言語に翻訳する大規模言語モデル(LLM)の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2022-10-13T19:34:14Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
多様な言語群をカバーするバランスの取れたコーパス上で,多言語の自動回帰言語モデルを訓練する。
私たちの最大のモデルは、20以上の代表言語で数ショットの学習において、新しい最先端の技術を定めています。
本稿では,モデルがどこで成功し,失敗するかを詳細に分析し,特に言語間の文脈内学習を可能にすることを示す。
論文 参考訳(メタデータ) (2021-12-20T16:52:35Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。