Fully Automated Correlated Time Series Forecasting in Minutes
- URL: http://arxiv.org/abs/2411.05833v1
- Date: Wed, 06 Nov 2024 09:02:13 GMT
- Title: Fully Automated Correlated Time Series Forecasting in Minutes
- Authors: Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, Christian S. Jensen,
- Abstract summary: We propose a fully automated and highly efficient correlated time series forecasting framework.
It includes a data-driven, iterative strategy to automatically prune a large search space to obtain a high-quality search space for a new forecasting task.
Experiments on seven benchmark datasets offer evidence that the framework is capable of state-of-the-art accuracy and is much more efficient than existing methods.
- Score: 31.198713853170375
- License:
- Abstract: Societal and industrial infrastructures and systems increasingly leverage sensors that emit correlated time series. Forecasting of future values of such time series based on recorded historical values has important benefits. Automatically designed models achieve higher accuracy than manually designed models. Given a forecasting task, which includes a dataset and a forecasting horizon, automated design methods automatically search for an optimal forecasting model for the task in a manually designed search space, and then train the identified model using the dataset to enable the forecasting. Existing automated methods face three challenges. First, the search space is constructed by human experts, rending the methods only semi-automated and yielding search spaces prone to subjective biases. Second, it is time consuming to search for an optimal model. Third, training the identified model for a new task is also costly. These challenges limit the practicability of automated methods in real-world settings. To contend with the challenges, we propose a fully automated and highly efficient correlated time series forecasting framework where the search and training can be done in minutes. The framework includes a data-driven, iterative strategy to automatically prune a large search space to obtain a high-quality search space for a new forecasting task. It includes a zero-shot search strategy to efficiently identify the optimal model in the customized search space. And it includes a fast parameter adaptation strategy to accelerate the training of the identified model. Experiments on seven benchmark datasets offer evidence that the framework is capable of state-of-the-art accuracy and is much more efficient than existing methods.
Related papers
- AutoSTF: Decoupled Neural Architecture Search for Cost-Effective Automated Spatio-Temporal Forecasting [9.622295997866551]
We propose AutoSTF, a decoupled neural search framework for automatedtemporal forecasting.
Our proposed method achieves up to 13.48x speed-up compared to state-of-the-art automatictemporal- forecasting methods.
arXiv Detail & Related papers (2024-09-25T03:25:34Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - auto-sktime: Automated Time Series Forecasting [18.640815949661903]
We introduce auto-sktime, a novel framework for automated time series forecasting.
The proposed framework uses the power of automated machine learning (AutoML) techniques to automate the creation of the entire forecasting pipeline.
Experimental results on 64 diverse real-world time series datasets demonstrate the effectiveness and efficiency of the framework.
arXiv Detail & Related papers (2023-12-13T21:34:30Z) - An Automated Machine Learning Approach for Detecting Anomalous Peak
Patterns in Time Series Data from a Research Watershed in the Northeastern
United States Critical Zone [3.1747517745997014]
This paper presents an automated machine learning framework designed to assist hydrologists in detecting anomalies in time series data generated by sensors in a research watershed in the northeastern United States critical zone.
The framework specifically focuses on identifying peak-pattern anomalies, which may arise from sensor malfunctions or natural phenomena.
arXiv Detail & Related papers (2023-09-14T19:07:50Z) - Refining the Optimization Target for Automatic Univariate Time Series
Anomaly Detection in Monitoring Services [7.950139316901604]
This paper proposes a comprehensive framework for automatic parameter optimization in time series anomaly detection models.
The framework introduces three optimization targets: prediction score, shape score, and sensitivity score, which can be easily adapted to different model backbones.
The proposed framework has been successfully applied online for over six months, serving more than 50,000 time series every minute.
arXiv Detail & Related papers (2023-07-20T07:33:36Z) - Heuristic-free Optimization of Force-Controlled Robot Search Strategies
in Stochastic Environments [13.622757453459748]
Even relatively simple peg-in-hole tasks are typically subject to variations, requiring search motions to find relevant features such as holes.
This paper introduces an automatic, data-driven and conditioning-free approach to optimize search strategies.
We evaluate our approach on two different industrial robots in the context of spiral and probe search for THT electronics assembly.
arXiv Detail & Related papers (2022-07-15T15:16:08Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
Collaborative filtering (CF) is a fundamental approach for recommender systems.
In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model.
Key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction and prediction function.
arXiv Detail & Related papers (2021-06-14T14:30:32Z) - Evolving Search Space for Neural Architecture Search [70.71153433676024]
We present a Neural Search-space Evolution (NSE) scheme that amplifies the results from the previous effort by maintaining an optimized search space subset.
We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance.
When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.
arXiv Detail & Related papers (2020-11-22T01:11:19Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.