AutoSTF: Decoupled Neural Architecture Search for Cost-Effective Automated Spatio-Temporal Forecasting
- URL: http://arxiv.org/abs/2409.16586v1
- Date: Wed, 25 Sep 2024 03:25:34 GMT
- Title: AutoSTF: Decoupled Neural Architecture Search for Cost-Effective Automated Spatio-Temporal Forecasting
- Authors: Tengfei Lyu, Weijia Zhang, Jinliang Deng, Hao Liu,
- Abstract summary: We propose AutoSTF, a decoupled neural search framework for automatedtemporal forecasting.
Our proposed method achieves up to 13.48x speed-up compared to state-of-the-art automatictemporal- forecasting methods.
- Score: 9.622295997866551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatio-temporal forecasting is a critical component of various smart city applications, such as transportation optimization, energy management, and socio-economic analysis. Recently, several automated spatio-temporal forecasting methods have been proposed to automatically search the optimal neural network architecture for capturing complex spatio-temporal dependencies. However, the existing automated approaches suffer from expensive neural architecture search overhead, which hinders their practical use and the further exploration of diverse spatio-temporal operators in a finer granularity. In this paper, we propose AutoSTF, a decoupled automatic neural architecture search framework for cost-effective automated spatio-temporal forecasting. From the efficiency perspective, we first decouple the mixed search space into temporal space and spatial space and respectively devise representation compression and parameter-sharing schemes to mitigate the parameter explosion. The decoupled spatio-temporal search not only expedites the model optimization process but also leaves new room for more effective spatio-temporal dependency modeling. From the effectiveness perspective, we propose a multi-patch transfer module to jointly capture multi-granularity temporal dependencies and extend the spatial search space to enable finer-grained layer-wise spatial dependency search. Extensive experiments on eight datasets demonstrate the superiority of AutoSTF in terms of both accuracy and efficiency. Specifically, our proposed method achieves up to 13.48x speed-up compared to state-of-the-art automatic spatio-temporal forecasting methods while maintaining the best forecasting accuracy.
Related papers
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - Fully Automated Correlated Time Series Forecasting in Minutes [31.198713853170375]
We propose a fully automated and highly efficient correlated time series forecasting framework.
It includes a data-driven, iterative strategy to automatically prune a large search space to obtain a high-quality search space for a new forecasting task.
Experiments on seven benchmark datasets offer evidence that the framework is capable of state-of-the-art accuracy and is much more efficient than existing methods.
arXiv Detail & Related papers (2024-11-06T09:02:13Z) - MLPST: MLP is All You Need for Spatio-Temporal Prediction [40.65579041549435]
Traffic is a typical deep model-temporal-based prediction method.
We propose a pure multi-layer perceptron architecture for traffic prediction.
arXiv Detail & Related papers (2023-09-23T12:58:16Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic
Prediction [1.6449390849183363]
We propose an automated dilated-temporal synchronous graph network prediction named Auto-DSTS for traffic prediction.
Specifically, we propose an automated dilated-temporal-temporal graph (Auto-DSTS) module to capture the short-term and long-term-temporal correlations.
Our model can achieve about 10% improvements compared with the state-of-art methods.
arXiv Detail & Related papers (2022-07-22T00:50:39Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
The proposed algorithm consists of three parts: an imaginative model for anticipating results before parking, an improved rapid-exploring random tree (RRT) and a path smoothing module.
Our algorithm is based on a real kinematic vehicle model; which makes it more suitable for algorithm application on real autonomous cars.
In order to evaluate the algorithm's effectiveness, we have compared our algorithm with traditional RRT, within three different parking scenarios.
arXiv Detail & Related papers (2021-08-25T18:24:34Z) - Mining Interpretable Spatio-temporal Logic Properties for Spatially
Distributed Systems [0.7585262843303869]
We propose the first set of algorithms for unsupervised learning for temporal data.
We show that our method generates STREL formulas of bounded description using a complexity decision-tree approach.
We demonstrate the effectiveness of our approach on case studies from diverse domains such as urban transportation, green infrastructure, and air quality monitoring.
arXiv Detail & Related papers (2021-06-16T04:51:26Z) - ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [94.90294600817215]
We propose a novel neural architecture search (NAS) method, termed ViPNAS, to search networks in both spatial and temporal levels for fast online video pose estimation.
In the spatial level, we carefully design the search space with five different dimensions including network depth, width, kernel size, group number, and attentions.
In the temporal level, we search from a series of temporal feature fusions to optimize the total accuracy and speed across multiple video frames.
arXiv Detail & Related papers (2021-05-21T06:36:40Z) - Evolving Search Space for Neural Architecture Search [70.71153433676024]
We present a Neural Search-space Evolution (NSE) scheme that amplifies the results from the previous effort by maintaining an optimized search space subset.
We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance.
When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.
arXiv Detail & Related papers (2020-11-22T01:11:19Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.