Enhancing Financial Fraud Detection with Human-in-the-Loop Feedback and Feedback Propagation
- URL: http://arxiv.org/abs/2411.05859v1
- Date: Thu, 07 Nov 2024 05:22:36 GMT
- Title: Enhancing Financial Fraud Detection with Human-in-the-Loop Feedback and Feedback Propagation
- Authors: Prashank Kadam,
- Abstract summary: This paper examines the impact of HITL feedback on both traditional and advanced techniques using proprietary and publicly available datasets.
Results show that HITL feedback improves model accuracy, with graph-based techniques benefiting the most.
By leveraging human expertise, this approach addresses challenges related to evolving fraud patterns, data sparsity, and model interpretability.
- Score: 0.0
- License:
- Abstract: Human-in-the-loop (HITL) feedback mechanisms can significantly enhance machine learning models, particularly in financial fraud detection, where fraud patterns change rapidly, and fraudulent nodes are sparse. Even small amounts of feedback from Subject Matter Experts (SMEs) can notably boost model performance. This paper examines the impact of HITL feedback on both traditional and advanced techniques using proprietary and publicly available datasets. Our results show that HITL feedback improves model accuracy, with graph-based techniques benefiting the most. We also introduce a novel feedback propagation method that extends feedback across the dataset, further enhancing detection accuracy. By leveraging human expertise, this approach addresses challenges related to evolving fraud patterns, data sparsity, and model interpretability, ultimately improving model robustness and streamlining the annotation process.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
Fine-grained feedback captures nuanced distinctions in image quality and prompt-alignment.
We show that demonstrating its superiority to coarse-grained feedback is not automatic.
We identify key challenges in eliciting and utilizing fine-grained feedback.
arXiv Detail & Related papers (2024-06-24T17:19:34Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - On the Potential of Network-Based Features for Fraud Detection [3.0846824529023382]
This article explores using the personalised PageRank (PPR) algorithm to capture the social dynamics of fraud.
The primary objective is to compare the performance of traditional features with the addition of PPR in fraud detection models.
Results indicate that integrating PPR enhances the model's predictive power, surpassing the baseline model.
arXiv Detail & Related papers (2024-02-14T13:20:09Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - Improving Sample Efficiency of Deep Learning Models in Electricity
Market [0.41998444721319217]
We propose a general framework, namely Knowledge-Augmented Training (KAT), to improve the sample efficiency.
We propose a novel data augmentation technique to generate some synthetic data, which are later processed by an improved training strategy.
Modern learning theories demonstrate the effectiveness of our method in terms of effective prediction error feedbacks, a reliable loss function, and rich gradient noises.
arXiv Detail & Related papers (2022-10-11T16:35:13Z) - Improving the Adversarial Robustness of NLP Models by Information
Bottleneck [112.44039792098579]
Non-robust features can be easily manipulated by adversaries to fool NLP models.
In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory.
We show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy.
arXiv Detail & Related papers (2022-06-11T12:12:20Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.