Reformulation for Pretraining Data Augmentation
- URL: http://arxiv.org/abs/2502.04235v2
- Date: Mon, 19 May 2025 11:52:17 GMT
- Title: Reformulation for Pretraining Data Augmentation
- Authors: Xintong Hao, Ruijie Zhu, Ge Zhang, Ke Shen, Chenggang Li,
- Abstract summary: We propose the Massive Genre-Audience(MGA) reformulation method, a lightweight and scalable data augmentation technique inspired by synthetic data methodologies.<n>We experimentally validate its core benefit by demonstrating superior performance against data repetition and upsampling in scaling scenarios.<n>Our work shows that MGA provides a reliable pathway to substantially augment training datasets, effectively alleviating repetition bottlenecks and enabling more efficient scaling of large language models.
- Score: 6.3722361366939255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the impressive capabilities of large language models across various tasks, their continued scaling is severely hampered not only by data scarcity but also by the performance degradation associated with excessive data repetition during training. To overcome this critical bottleneck, we propose the Massive Genre-Audience(MGA) reformulation method, a lightweight and scalable data augmentation technique inspired by synthetic data methodologies. MGA systematically reformulates existing corpora into diverse, contextually-rich variations to mitigate the negative effects of repetition, and we introduce this approach along with the resulting 770 billion token MGACorpus in this work. We experimentally validate its core benefit by demonstrating superior performance against data repetition and upsampling in scaling scenarios (up to 13B parameters). Furthermore, comprehensive analysis investigates the role of prompt engineering in generation quality and reveals nuances in evaluating model capabilities using standard loss metrics. Our work shows that MGA provides a reliable pathway to substantially augment training datasets, effectively alleviating repetition bottlenecks and enabling more efficient scaling of large language models.
Related papers
- Model-agnostic Mitigation Strategies of Data Imbalance for Regression [0.0]
Data imbalance persists as a pervasive challenge in regression tasks, introducing bias in model performance and undermining predictive reliability.<n>We present advanced mitigation techniques, which build upon and improve existing sampling methods.<n>We demonstrate that constructing an ensemble of models -- one trained with imbalance mitigation and another without -- can significantly reduce these negative effects.
arXiv Detail & Related papers (2025-06-02T09:46:08Z) - ToReMi: Topic-Aware Data Reweighting for Dynamic Pre-Training Data Selection [28.75333303894706]
ToReMi is a novel framework that adjusts training sample weights according to their topical associations and observed learning patterns.
Our experiments reveal that ToReMi variants consistently achieve superior performance over conventional pre-training approaches.
arXiv Detail & Related papers (2025-04-01T12:06:42Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
Generative retrieval reformulates retrieval as an autoregressive generation task, where large language models generate target documents directly from a query.<n>We systematically investigate training and inference scaling laws in generative retrieval, exploring how model size, training data scale, and inference-time compute jointly influence performance.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Lean-ing on Quality: How High-Quality Data Beats Diverse Multilingual Data in AutoFormalization [1.204553980682492]
We introduce a novel methodology that leverages back-translation with hand-curated prompts to enhance the mathematical capabilities of language models.
We show that our approaches surpass the performance of fine-tuning with extensive multilingual datasets.
Taken together, our methods show a promising new approach to significantly reduce the resources required to formalize, thereby accelerating AI for math.
arXiv Detail & Related papers (2025-02-18T19:16:54Z) - Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
We introduce an extended concept of memorization, distributional memorization, which measures the correlation between the output probabilities and the pretraining data frequency.<n>We show that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks.
arXiv Detail & Related papers (2024-07-20T21:24:40Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation [36.75453713794983]
We introduce the Diffusion Model to generate stock factors with Transformer architecture (DiffsFormer)
When presented with a specific downstream task, we employ DiffsFormer to augment the training procedure by editing existing samples.
The proposed method achieves relative improvements of 7.2% and 27.8% in annualized return ratio for the respective datasets.
arXiv Detail & Related papers (2024-02-05T03:54:36Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Towards Robust Pruning: An Adaptive Knowledge-Retention Pruning Strategy
for Language Models [35.58379464827462]
We introduce a post-training pruning strategy designed to faithfully replicate the embedding space and feature space of dense language models.
Compared to other state-of-art baselines, our approach demonstrates a superior balance between accuracy, sparsity, robustness, and pruning cost with BERT on datasets SST2, IMDB, and AGNews.
arXiv Detail & Related papers (2023-10-19T23:02:29Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Efficient Speech Translation with Pre-trained Models [13.107314023500349]
We investigate efficient strategies to build cascaded and end-to-end speech translation systems based on pre-trained models.
While the end-to-end models show superior translation performance to cascaded ones, the application of this technology has a limitation on the need for additional end-to-end training data.
arXiv Detail & Related papers (2022-11-09T15:07:06Z) - Masked Autoencoders As The Unified Learners For Pre-Trained Sentence
Representation [77.47617360812023]
We extend the recently proposed MAE style pre-training strategy, RetroMAE, to support a wide variety of sentence representation tasks.
The first stage performs RetroMAE over generic corpora, like Wikipedia, BookCorpus, etc., from which the base model is learned.
The second stage takes place on domain-specific data, e.g., MS MARCO and NLI, where the base model is continuingly trained based on RetroMAE and contrastive learning.
arXiv Detail & Related papers (2022-07-30T14:34:55Z) - Virtual Data Augmentation: A Robust and General Framework for
Fine-tuning Pre-trained Models [51.46732511844122]
Powerful pre-trained language models (PLM) can be fooled by small perturbations or intentional attacks.
We present Virtual Data Augmentation (VDA), a general framework for robustly fine-tuning PLMs.
Our approach is able to improve the robustness of PLMs and alleviate the performance degradation under adversarial attacks.
arXiv Detail & Related papers (2021-09-13T09:15:28Z) - Missingness Augmentation: A General Approach for Improving Generative
Imputation Models [20.245637164975594]
We propose a novel data augmentation method called Missingness Augmentation (MisA) for generative imputation models.
As a general augmentation technique, MisA can be easily integrated into generative imputation frameworks.
Experimental results demonstrate that MisA significantly improves the performance of many recently proposed generative imputation models.
arXiv Detail & Related papers (2021-07-31T08:51:46Z) - GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation [9.501648136713694]
Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts.
This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples.
arXiv Detail & Related papers (2021-04-18T11:39:33Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.