論文の概要: Alternative Learning Paradigms for Image Quality Transfer
- arxiv url: http://arxiv.org/abs/2411.05885v1
- Date: Fri, 08 Nov 2024 10:59:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:41.075776
- Title: Alternative Learning Paradigms for Image Quality Transfer
- Title(参考訳): 画像品質伝達のための代替学習パラダイム
- Authors: Ahmed Karam Eldaly, Matteo Figini, Daniel C. Alexander,
- Abstract要約: 画像品質伝達(IQT)は、低品質な医用画像のコントラストと解像度を高めることを目的としている。
IQT問題の2つの新しい定式化を提案する。
- 参考スコア(独自算出の注目度): 2.662628670752034
- License:
- Abstract: Image Quality Transfer (IQT) aims to enhance the contrast and resolution of low-quality medical images, e.g. obtained from low-power devices, with rich information learned from higher quality images. In contrast to existing IQT methods which adopt supervised learning frameworks, in this work, we propose two novel formulations of the IQT problem. The first approach uses an unsupervised learning framework, whereas the second is a combination of both supervised and unsupervised learning. The unsupervised learning approach considers a sparse representation (SRep) and dictionary learning model, which we call IQT-SRep, whereas the combination of supervised and unsupervised learning approach is based on deep dictionary learning (DDL), which we call IQT-DDL. The IQT-SRep approach trains two dictionaries using a SRep model using pairs of low- and high-quality volumes. Subsequently, the SRep of a low-quality block, in terms of the low-quality dictionary, can be directly used to recover the corresponding high-quality block using the high-quality dictionary. On the other hand, the IQT-DDL approach explicitly learns a high-resolution dictionary to upscale the input volume, while the entire network, including high dictionary generator, is simultaneously optimised to take full advantage of deep learning methods. The two models are evaluated using a low-field magnetic resonance imaging (MRI) application aiming to recover high-quality images akin to those obtained from high-field scanners. Experiments comparing the proposed approaches against state-of-the-art supervised deep learning IQT method (IQT-DL) identify that the two novel formulations of the IQT problem can avoid bias associated with supervised methods when tested using out-of-distribution data that differs from the distribution of the data the model was trained on. This highlights the potential benefit of these novel paradigms for IQT.
- Abstract(参考訳): 画像品質転送(IQT)は、低消費電力デバイスから取得した低品質の医療画像のコントラストと解像度を高めることを目的としている。
本研究では、教師付き学習フレームワークを採用する既存のIQT法とは対照的に、IQT問題の2つの新しい定式化を提案する。
第一のアプローチは教師なし学習フレームワークを使用し、第二のアプローチは教師なし学習と教師なし学習の組み合わせである。
教師なし学習アプローチは、私たちがIQT-SRepと呼ぶスパース表現(SRep)と辞書学習モデルを考えるが、教師なし学習アプローチと教師なし学習アプローチの組み合わせは、私たちがIQT-DDLと呼ぶ深層辞書学習(DDL)に基づいている。
IQT-SRepアプローチは、低音量と高音量のペアを用いてSRepモデルを用いて2つの辞書を訓練する。
その後、低品質な辞書のSRepを直接使用して、高品質な辞書を用いて対応する高品質なブロックを復元することができる。
一方、IQT-DDL方式では、入力ボリュームをアップスケールする高精細辞書を明示的に学習し、高辞書生成器を含む全ネットワークを同時に最適化し、深層学習手法を最大限に活用する。
低磁場磁気共鳴イメージング(MRI)アプリケーションを用いて,高磁場スキャナーによる高画質画像の復元を目的とした2つのモデルの評価を行った。
IQT問題の2つの新しい定式化は、モデルがトレーニングしたデータの分布と異なる分布データを用いてテストした場合に、教師付き手法に関連するバイアスを回避することができると、最先端の教師付きディープラーニングIQT法(IQT-DL)に対する提案手法と比較実験を行った。
このことは、IQTのこれらの新しいパラダイムの潜在的な利点を浮き彫りにする。
関連論文リスト
- Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化(英: Uncertainty Quantification、UQ)は、機械学習(ML)アプリケーションにおいて重要なコンポーネントである。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、9つのタスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も有望なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - GenzIQA: Generalized Image Quality Assessment using Prompt-Guided Latent Diffusion Models [7.291687946822539]
最先端のNR-IQA手法の大きな欠点は、様々なIQA設定にまたがる一般化能力に制限があることである。
近年のテキスト・ツー・イメージ生成モデルでは,テキスト概念に関する細部から意味のある視覚概念が生成されている。
本研究では、学習可能な品質対応テキストプロンプトと画像のアライメントの程度を理解することにより、一般化されたIQAに対してそのような拡散モデルのデノベーションプロセスを利用する。
論文 参考訳(メタデータ) (2024-06-07T05:46:39Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
野生のブラインド画像品質評価(IQA)は重大な課題を呈している。
大規模なトレーニングデータの収集が困難であることを考えると、厳密な一般化モデルを開発するために限られたデータを活用することは、未解決の問題である。
事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルの堅牢な画像認識能力により,新しいIQA法,拡散先行に基づくIQAを提案する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Depicting Beyond Scores: Advancing Image Quality Assessment through Multi-modal Language Models [28.194638379354252]
本稿では,従来のスコアベース手法の制約を克服するDepicted Image Quality Assessment法(DepictQA)を提案する。
DepictQAは、マルチモーダルな大規模言語モデルを利用することで、詳細な言語ベースの人間のような画像品質の評価を可能にする。
これらの結果はマルチモーダルIQA法の研究の可能性を示している。
論文 参考訳(メタデータ) (2023-12-14T14:10:02Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
本稿では,完全な参照 (FR) と非参照 (NR) IQA を行うネットワークを提案する。
まず、入力画像から多レベル特徴を抽出するためにエンコーダを用いる。
FRおよびNR入力のユニバーサルアダプタとして階層的注意(HA)モジュールを提案する。
エンコーダの浅い層と深い層との間の特徴相関を調べるために, セマンティック・ディストーション・アウェア (SDA) モジュールを提案する。
論文 参考訳(メタデータ) (2023-10-14T11:03:04Z) - Hierarchical Phrase-based Sequence-to-Sequence Learning [94.10257313923478]
本稿では、学習中の帰納バイアスの源として階層的フレーズを取り入れ、推論中の明示的な制約として、標準的なシーケンス・ツー・シーケンス(seq2seq)モデルの柔軟性を維持するニューラルトランスデューサについて述べる。
本手法では,木が原文と対象句を階層的に整列するブラケット文法に基づく識別的導出法と,整列した句を1対1で翻訳するニューラルネットワークセク2セックモデルという2つのモデルを訓練する。
論文 参考訳(メタデータ) (2022-11-15T05:22:40Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
本稿では,深層メタラーニングに基づく非参照IQA尺度を提案する。
まず、様々な歪みに対してNR-IQAタスクを収集する。
次にメタラーニングを用いて、多彩な歪みによって共有される事前知識を学習する。
大規模な実験により、提案された計量は最先端の技術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-04-11T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。