Querying Perception Streams with Spatial Regular Expressions
- URL: http://arxiv.org/abs/2411.05946v1
- Date: Fri, 08 Nov 2024 20:15:27 GMT
- Title: Querying Perception Streams with Spatial Regular Expressions
- Authors: Jacob Anderson, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto, Danil Prokhorov,
- Abstract summary: We introduce SpREs as a novel querying language for pattern matching over streams containing spatial and temporal data.
We develop the STREM tool as both an offline and online pattern matching framework for perception data.
Using our matching framework, we are able to find over 20,000 matches within 296 ms making STREM applicable in runtime monitoring applications.
- Score: 3.6814516646862683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perception in fields like robotics, manufacturing, and data analysis generates large volumes of temporal and spatial data to effectively capture their environments. However, sorting through this data for specific scenarios is a meticulous and error-prone process, often dependent on the application, and lacks generality and reproducibility. In this work, we introduce SpREs as a novel querying language for pattern matching over perception streams containing spatial and temporal data derived from multi-modal dynamic environments. To highlight the capabilities of SpREs, we developed the STREM tool as both an offline and online pattern matching framework for perception data. We demonstrate the offline capabilities of STREM through a case study on a publicly available AV dataset (Woven Planet Perception) and its online capabilities through a case study integrating STREM in ROS with the CARLA simulator. We also conduct performance benchmark experiments on various SpRE queries. Using our matching framework, we are able to find over 20,000 matches within 296 ms making STREM applicable in runtime monitoring applications.
Related papers
- STRAP: Spatio-Temporal Pattern Retrieval for Out-of-Distribution Generalization [34.53308463024231]
We propose an innovative Spatio-Temporal Retrieval-Augmented Pattern Learning framework, STRAP.<n>During inference, STRAP retrieves relevant patterns from this library based on similarity to the current input and injects them into the model via a plug-and-play prompting mechanism.<n>Experiments across multiple real-world streaming graph datasets show that STRAP consistently outperforms state-of-the-art STGNN baselines on STOOD tasks.
arXiv Detail & Related papers (2025-05-26T06:11:05Z) - STaRFormer: Semi-Supervised Task-Informed Representation Learning via Dynamic Attention-Based Regional Masking for Sequential Data [4.351581973358463]
Transformer-based approach, STaRFormer, serves as a universal framework for sequential modeling.
STaRFormer employs a novel, dynamic attention-based regional masking scheme combined with semi-supervised contrastive learning to enhance task-specific latent representations.
arXiv Detail & Related papers (2025-04-14T11:03:19Z) - STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM [18.56267873980915]
STD-PLM is capable of implementing both spatial-temporal forecasting and imputation tasks.
STD-PLM understands spatial-temporal correlations via explicitly designed spatial and temporal tokenizers.
STD-PLM exhibits competitive performance and generalization capabilities across the forecasting and imputation tasks.
arXiv Detail & Related papers (2024-07-12T08:48:16Z) - AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning [98.26836657967162]
textbfAgentOhana aggregates agent trajectories from distinct environments, spanning a wide array of scenarios.
textbfxLAM-v0.1, a large action model tailored for AI agents, demonstrates exceptional performance across various benchmarks.
arXiv Detail & Related papers (2024-02-23T18:56:26Z) - Event-driven Real-time Retrieval in Web Search [15.235255100530496]
This paper expands the query with event information that represents real-time search intent.
We further enhance the model's capacity for event representation through multi-task training.
Our proposed approach significantly outperforms existing state-of-the-art baseline methods.
arXiv Detail & Related papers (2023-12-01T06:30:31Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - STREAMLINE: Streaming Active Learning for Realistic Multi-Distributional
Settings [2.580765958706854]
STREAMLINE is a novel streaming active learning framework that mitigates scenario-driven slice imbalance in working labeled data.
We evaluate STREAMLINE on real-world streaming scenarios for image classification and object detection tasks.
arXiv Detail & Related papers (2023-05-18T02:01:45Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Local Exceptionality Detection in Time Series Using Subgroup Discovery [0.5371337604556311]
We present a novel approach for local exceptionality detection on time series data.
This method provides the ability to discover interpretable patterns in the data, which can be used to understand and predict the progression of a time series.
arXiv Detail & Related papers (2021-08-05T17:19:51Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - PyODDS: An End-to-end Outlier Detection System with Automated Machine
Learning [55.32009000204512]
We present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support.
Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space.
It also provides unified interfaces and visualizations for users with or without data science or machine learning background.
arXiv Detail & Related papers (2020-03-12T03:30:30Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.