Harnessing coherence generation for precision single- and two-qubit quantum thermometry
- URL: http://arxiv.org/abs/2411.05950v2
- Date: Mon, 18 Nov 2024 15:25:36 GMT
- Title: Harnessing coherence generation for precision single- and two-qubit quantum thermometry
- Authors: Youssef Aiache, Abderrahim El Allati, Khadija El Anouz,
- Abstract summary: Investigation assesses the precision of temperature estimate using quantum Fisher information and the accompanying quantum signal-to-noise ratio.
We analyze two interacting qubits that were initially entangled or separated as quantum probes for various environmental configurations.
- Score: 0.0
- License:
- Abstract: Quantum probes, such as single- and two-qubit probes, can accurately measure the temperature of a bosonic bath. The current investigation assesses the precision of temperature estimate using quantum Fisher information and the accompanying quantum signal-to-noise ratio. Employing an ancilla as a mediator between the probe and the bath improves thermometric sensitivity by transmitting temperature information into the probe qubit's coherences. In addition, we analyze two interacting qubits that were initially entangled or separated as quantum probes for various environmental configurations. Our findings show that increased precision is gained when the probe approaches its steady state, which is determined by the coupling between the two qubits. Furthermore, we can obtain high efficiency temperature estimation for any low temperature by changing the interaction between the two qubits.
Related papers
- Quantum thermometry for ultralow temperatures using probe and ancilla qubit chains [0.0]
We propose a scheme to enhance the range and precision of ultralow temperature measurements by employing a probe qubit coupled to a chain of ancilla qubits.
This study highlights the potential of the probe qubit-ancilla chain system as a powerful and precise tool for quantum thermometry in the ultralow temperature regime.
arXiv Detail & Related papers (2024-12-19T14:28:04Z) - Enhancing low-temperature quantum thermometry via sequential measurements [14.060887953591399]
We propose a sequential measurement protocol for accurate low-temperature estimation.
The resulting correlated outputs significantly enhance the low temperature precision.
We find that quantum thermometry within the sequential protocol functions as a high-resolution quantum spectroscopy of the thermal noise.
arXiv Detail & Related papers (2024-12-06T09:20:01Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Energy measurements remain thermometrically optimal beyond weak coupling [0.0]
We develop a general perturbative theory of finite-coupling quantum thermometry up to second order in probe-sample interaction.
By assumption, the probe and sample are in thermal equilibrium, so the probe is described by the mean-force Gibbs state.
We prove that the ultimate thermometric precision can be achieved - to second order in the coupling.
arXiv Detail & Related papers (2023-02-06T19:01:07Z) - Low-temperature quantum thermometry boosted by coherence generation [0.0]
We present a method for low-temperature measurement that improves thermal range and sensitivity by generating quantum coherence in a thermometer probe.
We use a two-level quantum system, or qubit, as our probe and prevent direct probe access to the sample by introducing a set of ancilla qubits as an interface.
arXiv Detail & Related papers (2022-11-10T10:12:58Z) - Thermometric machine for ultraprecise thermometry of low temperatures [0.0]
We present a thermometric scheme that does not thermalize with the sample whose temperature is measured.
This is made possible thanks to a suitable interaction that couples the probe to the sample and to an auxiliary thermal bath known to be at a higher temperature.
We numerically illustrate an extreme reduction in the number of measurements to attain a given precision.
arXiv Detail & Related papers (2021-08-24T01:37:59Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Discrimination of Ohmic thermal baths by quantum dephasing probes [68.8204255655161]
We evaluate the minimum error probability achievable by three different kinds of quantum probes, namely a qubit, a qutrit and a quantum register made of two qubits.
A qutrit probe outperforms a qubit one in the discrimination task, whereas a register made of two qubits does not offer any advantage.
arXiv Detail & Related papers (2020-08-06T08:51:51Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.