Tackling extreme urban heat: a machine learning approach to assess the impacts of climate change and the efficacy of climate adaptation strategies in urban microclimates
- URL: http://arxiv.org/abs/2411.05952v1
- Date: Fri, 08 Nov 2024 20:29:11 GMT
- Title: Tackling extreme urban heat: a machine learning approach to assess the impacts of climate change and the efficacy of climate adaptation strategies in urban microclimates
- Authors: Grant Buster, Jordan Cox, Brandon N. Benton, Ryan N. King,
- Abstract summary: High temperatures concentrated in urban heat can drive increased risk of heat-related death and illness.
We present open-source, computationally efficient machine learning methods that can improve the accuracy of urban temperature estimates.
We find that cooling demand is likely to increase substantially through midcentury, but engineered high-albedo surfaces could lessen this increase by more than 50%.
- Score: 0.0
- License:
- Abstract: As urbanization and climate change progress, urban heat becomes a priority for climate adaptation efforts. High temperatures concentrated in urban heat can drive increased risk of heat-related death and illness as well as increased energy demand for cooling. However, estimating the effects of urban heat is an ongoing field of research typically burdened by an imprecise description of the built environment, significant computational cost, and a lack of high-resolution estimates of the impacts of climate change. Here, we present open-source, computationally efficient machine learning methods that can improve the accuracy of urban temperature estimates when compared to historical reanalysis data. These models are applied to residential buildings in Los Angeles, and we compare the energy benefits of heat mitigation strategies to the impacts of climate change. We find that cooling demand is likely to increase substantially through midcentury, but engineered high-albedo surfaces could lessen this increase by more than 50%. The corresponding increase in heating demand complicates this narrative, but total annual energy use from combined heating and cooling with electric heat pumps in the Los Angeles urban climate is shown to benefit from the engineered cooling strategies under both current and future climates.
Related papers
- A Machine Learning Approach for the Efficient Estimation of Ground-Level Air Temperature in Urban Areas [6.7236795813629]
The Urban Heat Island (UHI) phenomenon that occurs in cities, increasing their thermal stress, is one of the stumbling blocks to achieve a more sustainable city.
In this work we explore the usefulness of image-to-image deep neural networks (DNNs) for correlating spatial and meteorological variables of a urban area with street-level air temperature.
The air temperature at street-level is estimated both spatially and temporally for a specific use case, and compared with existing, well-established numerical models.
arXiv Detail & Related papers (2024-11-05T15:05:23Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Physics-based deep learning reveals rising heating demand heightens air pollution in Norwegian cities [0.9187407509784052]
Policymakers frequently analyze air quality and climate change in isolation, disregarding their interactions.
This study explores the influence of specific climate factors on air quality by contrasting a regression model with K-Means Clustering, Hierarchical Clustering, and Random Forest techniques.
We employ Physics-based Deep Learning (PBDL) and Long Short-Term Memory (LSTM) to examine the air pollution predictions.
arXiv Detail & Related papers (2024-05-07T23:43:46Z) - Incorporating climate change effects into the European power system
adequacy assessment using a post-processing method [0.0]
The demand-supply balance of electricity systems is fundamentally linked to climate conditions.
The present study aims to model the effect of climate change on the European electricity system, specifically on its long-term reliability.
arXiv Detail & Related papers (2024-02-26T21:44:36Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
We introduce Extreme Model Output Statistics (X-MOS) to improve predictions of natural disaster risks.
This approach utilizes deep regression techniques to precisely map CMIP model outputs to real measurements obtained from weather stations.
In contrast to previous research, our study places a strong emphasis on enhancing the estimation of the tails of future climate parameter distributions.
arXiv Detail & Related papers (2023-10-24T13:18:53Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves.
Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments.
Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs.
We employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales.
arXiv Detail & Related papers (2023-10-09T13:07:23Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - ClimateGAN: Raising Climate Change Awareness by Generating Images of
Floods [89.61670857155173]
We present our solution to simulate photo-realistic floods on authentic images.
We propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation.
arXiv Detail & Related papers (2021-10-06T15:54:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.