Heatwave increases nighttime light intensity in hyperdense cities of the Global South: A double machine learning study
- URL: http://arxiv.org/abs/2503.00557v1
- Date: Sat, 01 Mar 2025 16:52:42 GMT
- Title: Heatwave increases nighttime light intensity in hyperdense cities of the Global South: A double machine learning study
- Authors: Ramit Debnath, Taran Chandel, Fengyuan Han, Ronita Bardhan,
- Abstract summary: Heatwaves, intensified by climate change and rapid urbanisation, pose significant threats to urban systems.<n>This study investigates the relationship between heatwaves and nighttime light (NTL) radiance in four hyperdense cities in the Global South.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heatwaves, intensified by climate change and rapid urbanisation, pose significant threats to urban systems, particularly in the Global South, where adaptive capacity is constrained. This study investigates the relationship between heatwaves and nighttime light (NTL) radiance, a proxy of nighttime economic activity, in four hyperdense cities: Delhi, Guangzhou, Cairo, and Sao Paulo. We hypothesised that heatwaves increase nighttime activity. Using a double machine learning (DML) framework, we analysed data from 2013 to 2019 to quantify the impact of heatwaves on NTL while controlling for local climatic confounders. Results revealed a statistically significant increase in NTL intensity during heatwaves, with Cairo, Delhi, and Guangzhou showing elevated NTL on the third day, while S\~ao Paulo exhibits a delayed response on the fourth day. Sensitivity analyses confirmed the robustness of these findings, indicating that prolonged heat stress prompts urban populations to shift activities to night. Heterogeneous responses across cities highlight the possible influence of urban morphology and adaptive capacity to heatwave impacts. Our findings provide a foundation for policymakers to develop data-driven heat adaptation strategies, ensuring that cities remain liveable and economically resilient in an increasingly warming world.
Related papers
- Adopting Explainable-AI to investigate the impact of urban morphology design on energy and environmental performance in dry-arid climates [0.0]
This study advances urban morphology evaluation by combining Urban Building Energy Modeling (UBEM) with machine learning methods (ML) and Explainable AI techniques.<n>Using Tehran's dense urban landscape as a case study, this research assesses and ranks the impact of 30 morphology parameters on key energy metrics.<n>Findings reveal that building shape, window-to-wall ratio, and commercial ratio are the most critical parameters affecting energy efficiency.
arXiv Detail & Related papers (2024-12-13T09:19:49Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Tackling extreme urban heat: a machine learning approach to assess the impacts of climate change and the efficacy of climate adaptation strategies in urban microclimates [0.0]
High temperatures concentrated in urban heat can drive increased risk of heat-related death and illness.
We present open-source, computationally efficient machine learning methods that can improve the accuracy of urban temperature estimates.
We find that cooling demand is likely to increase substantially through midcentury, but engineered high-albedo surfaces could lessen this increase by more than 50%.
arXiv Detail & Related papers (2024-11-08T20:29:11Z) - A Machine Learning Approach for the Efficient Estimation of Ground-Level Air Temperature in Urban Areas [6.7236795813629]
The Urban Heat Island (UHI) phenomenon that occurs in cities, increasing their thermal stress, is one of the stumbling blocks to achieve a more sustainable city.
In this work we explore the usefulness of image-to-image deep neural networks (DNNs) for correlating spatial and meteorological variables of a urban area with street-level air temperature.
The air temperature at street-level is estimated both spatially and temporally for a specific use case, and compared with existing, well-established numerical models.
arXiv Detail & Related papers (2024-11-05T15:05:23Z) - Physics-based deep learning reveals rising heating demand heightens air pollution in Norwegian cities [0.9187407509784052]
Policymakers frequently analyze air quality and climate change in isolation, disregarding their interactions.
This study explores the influence of specific climate factors on air quality by contrasting a regression model with K-Means Clustering, Hierarchical Clustering, and Random Forest techniques.
We employ Physics-based Deep Learning (PBDL) and Long Short-Term Memory (LSTM) to examine the air pollution predictions.
arXiv Detail & Related papers (2024-05-07T23:43:46Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves.
Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments.
Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs.
We employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales.
arXiv Detail & Related papers (2023-10-09T13:07:23Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Transportation Density Reduction Caused by City Lockdowns Across the
World during the COVID-19 Epidemic: From the View of High-resolution Remote
Sensing Imagery [48.52477000522933]
The COVID-19 epidemic began to worsen in the first months of 2020.
stringent lockdown policies were implemented in numerous cities throughout the world to control human transmission and mitigate its spread.
We provide a quantitative investigation of the transportation density reduction before and after lockdown was implemented in six epicenter cities.
arXiv Detail & Related papers (2021-03-02T13:45:16Z) - Urban Heat Islands: Beating the Heat with Multi-Modal Spatial Analysis [0.3121997724420106]
Excessive levels of heat stress leads to problems at various levels, ranging from the individual to the world.
At the world level, UHI potentially contributes to global warming and adversely affects the environment.
We propose a framework for investigating how UHI is affected by a city's urban form characteristics through the use of statistical modelling.
arXiv Detail & Related papers (2020-12-05T15:18:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.