A method based on Generative Adversarial Networks for disentangling physical and chemical properties of stars in astronomical spectra
- URL: http://arxiv.org/abs/2411.05960v1
- Date: Fri, 08 Nov 2024 20:45:09 GMT
- Title: A method based on Generative Adversarial Networks for disentangling physical and chemical properties of stars in astronomical spectra
- Authors: Raúl Santoveña, Carlos Dafonte, Minia Manteiga,
- Abstract summary: In this work, an encoder-decoder architecture has been designed, where adversarial training is used in the context of astrophysical spectral analysis.
A scheme of deep learning is used with the aim of unraveling in the latent space the desired parameters of the rest of the information contained in the data.
To test the effectiveness of the method, synthetic astronomical data are used from the APOGEE and Gaia surveys.
- Score: 0.16385815610837165
- License:
- Abstract: Data compression techniques focused on information preservation have become essential in the modern era of big data. In this work, an encoder-decoder architecture has been designed, where adversarial training, a modification of the traditional autoencoder, is used in the context of astrophysical spectral analysis. The goal of this proposal is to obtain an intermediate representation of the astronomical stellar spectra, in which the contribution to the flux of a star due to the most influential physical properties (its surface temperature and gravity) disappears and the variance reflects only the effect of the chemical composition over the spectrum. A scheme of deep learning is used with the aim of unraveling in the latent space the desired parameters of the rest of the information contained in the data. This work proposes a version of adversarial training that makes use of a discriminator per parameter to be disentangled, thus avoiding the exponential combination that occurs in the use of a single discriminator, as a result of the discretization of the values to be untangled. To test the effectiveness of the method, synthetic astronomical data are used from the APOGEE and Gaia surveys. In conjunction with the work presented, we also provide a disentangling framework (GANDALF) available to the community, which allows the replication, visualization, and extension of the method to domains of any nature.
Related papers
- Targeting the partition function of chemically disordered materials with a generative approach based on inverse variational autoencoders [0.0]
We propose a novel approach where generative machine learning is used to yield a representative set of configurations for accurate property evaluation.
Our method employs a specific type of variational autoencoder with inverse roles for the encoder and decoder.
We illustrate our approach by computing point-defect formation energies and concentrations in (U, Pu)O2 mixed-oxide fuels.
arXiv Detail & Related papers (2024-08-27T10:05:37Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
nbi [0.0]
We train an ANPE model for the APOGEE survey and demonstrate its efficacy on both mock and real stellar spectra.
We introduce an effective approach to handling the measurement noise properties inherent in spectral data.
We discuss the utility of an ANPE "model zoo," where models are trained for specific instruments and distributed under the nbi framework.
arXiv Detail & Related papers (2023-12-09T21:30:07Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
The deep learning revolution has opened the door for deriving such analytical results directly with a computer algorithm fitting to the data.
We successfully demonstrate the use of symbolic regression on synthetic data for the transit radii of generic hot Jupiter exoplanets.
As a preprocessing step, we use dimensional analysis to identify the relevant dimensionless combinations of variables.
arXiv Detail & Related papers (2021-12-22T00:52:56Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
We introduce a Frequency Spectrum Augmentation Consistency (FSAC) framework with four different low-frequency filter operations.
In the first stage, we utilize all the original and augmented source data to train an object detector.
In the second stage, augmented source and target data with pseudo labels are adopted to perform the self-training for prediction consistency.
arXiv Detail & Related papers (2021-12-16T04:07:01Z) - Robust Feature Disentanglement in Imaging Data via Joint Invariant
Variational Autoencoders: from Cards to Atoms [0.0]
We introduce a joint rotationally (and translationally) invariant variational autoencoder (j-trVAE)
The performance of this method is validated on several synthetic data sets and extended to high-resolution imaging data of electron and scanning probe microscopy.
We show that latent space behaviors directly comport to the known physics of ferroelectric materials and quantum systems.
arXiv Detail & Related papers (2021-04-20T18:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.