論文の概要: Game-theoretic LLM: Agent Workflow for Negotiation Games
- arxiv url: http://arxiv.org/abs/2411.05990v1
- Date: Fri, 08 Nov 2024 22:02:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:35.899323
- Title: Game-theoretic LLM: Agent Workflow for Negotiation Games
- Title(参考訳): ゲーム理論 LLM: ネゴシエーションゲームのためのエージェントワークフロー
- Authors: Wenyue Hua, Ollie Liu, Lingyao Li, Alfonso Amayuelas, Julie Chen, Lucas Jiang, Mingyu Jin, Lizhou Fan, Fei Sun, William Wang, Xintong Wang, Yongfeng Zhang,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の戦略的意思決定文脈における合理性について検討する。
LLMの推論と意思決定を導く複数のゲーム理論を設計する。
この発見は、より堅牢で戦略的に健全なAIエージェントの開発に影響を及ぼす。
- 参考スコア(独自算出の注目度): 30.83905391503607
- License:
- Abstract: This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory. We evaluate several state-of-the-art LLMs across a spectrum of complete-information and incomplete-information games. Our findings reveal that LLMs frequently deviate from rational strategies, particularly as the complexity of the game increases with larger payoff matrices or deeper sequential trees. To address these limitations, we design multiple game-theoretic workflows that guide the reasoning and decision-making processes of LLMs. These workflows aim to enhance the models' ability to compute Nash Equilibria and make rational choices, even under conditions of uncertainty and incomplete information. Experimental results demonstrate that the adoption of these workflows significantly improves the rationality and robustness of LLMs in game-theoretic tasks. Specifically, with the workflow, LLMs exhibit marked improvements in identifying optimal strategies, achieving near-optimal allocations in negotiation scenarios, and reducing susceptibility to exploitation during negotiations. Furthermore, we explore the meta-strategic considerations of whether it is rational for agents to adopt such workflows, recognizing that the decision to use or forgo the workflow constitutes a game-theoretic issue in itself. Our research contributes to a deeper understanding of LLMs' decision-making capabilities in strategic contexts and provides insights into enhancing their rationality through structured workflows. The findings have implications for the development of more robust and strategically sound AI agents capable of navigating complex interactive environments. Code and data supporting this study are available at \url{https://github.com/Wenyueh/game_theory}.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の戦略的意思決定文脈における合理性,特にゲーム理論の枠組み内での検討を行う。
完全情報ゲームと不完全情報ゲームにまたがるいくつかの最先端LCMを評価した。
以上の結果から,LLMは,特にゲームが複雑になるにつれて,より大きなペイオフ行列やより深いシーケンシャルツリーによって,合理的戦略から逸脱することが少なくないことがわかった。
これらの制約に対処するために、LLMの推論と意思決定プロセスを導く複数のゲーム理論ワークフローを設計する。
これらのワークフローは、不確実性や不完全な情報の条件下であっても、モデルがナッシュ平衡を計算し、合理的な選択を行う能力を高めることを目的としている。
実験結果から,ゲーム理論タスクにおけるLLMの合理性とロバスト性は,これらのワークフローの採用によって著しく向上することが示された。
具体的には、ワークフローにおいて、LLMは最適な戦略の特定、交渉シナリオにおける最適に近いアロケーションの実現、交渉中の搾取に対する感受性の低下を顕著に改善した。
さらに、エージェントがそのようなワークフローを採用するのが合理的かどうかというメタストラテジックな考察を考察し、ワークフローの使用や回避の決定自体がゲーム理論上の問題であることを認めた。
我々の研究は、戦略的文脈におけるLCMの意思決定能力のより深い理解に寄与し、構造化ワークフローによる合理性の向上に関する洞察を提供する。
この発見は、複雑な対話環境をナビゲートできる、より堅牢で戦略的に健全なAIエージェントの開発に影響を及ぼす。
この研究をサポートするコードとデータは、 \url{https://github.com/Wenyueh/game_theory}で公開されている。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
大規模言語モデル(LLM)は、医療などの重要な領域における現実世界のアプリケーションにますます採用されている。
これらのモデルによって生成されたCoT(Chain-of-Thought)推論が、その基盤となる振る舞いを忠実に捉えることが重要である。
論文 参考訳(メタデータ) (2024-06-15T13:16:44Z) - STRIDE: A Tool-Assisted LLM Agent Framework for Strategic and Interactive Decision-Making [43.734386326024016]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしており、言語能力と推論能力が顕著である。
本稿では,その戦略的意思決定能力を高めるため,メモリと特殊なツールを備えた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-25T23:25:10Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
大規模言語モデル(LLM)は、重要な現実世界のアプリケーションに統合される。
本稿では,LLMの競合環境における推論能力について検討する。
まず,広く認識されている10のタスクを構成する言語駆動型環境であるGTBenchを提案する。
論文 参考訳(メタデータ) (2024-02-19T18:23:36Z) - ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents [77.34720446306419]
Alympicsは、ゲーム理論の研究にLarge Language Model (LLM)エージェントを利用する、体系的なシミュレーションフレームワークである。
Alympicsは、複雑なゲーム理論の問題を研究するための汎用的なプラットフォームを作成する。
論文 参考訳(メタデータ) (2023-11-06T16:03:46Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
イベント関係抽出は、綿密な意味的理解と厳密な論理的推論を必要とする課題である。
本稿では,イベント関連論理の理解と適用におけるLLMの能力について,詳細な調査を行う。
本研究により,LLMは論理的に一貫した推論子ではないことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-13T14:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。