CGLearn: Consistent Gradient-Based Learning for Out-of-Distribution Generalization
- URL: http://arxiv.org/abs/2411.06040v1
- Date: Sat, 09 Nov 2024 02:36:39 GMT
- Title: CGLearn: Consistent Gradient-Based Learning for Out-of-Distribution Generalization
- Authors: Jawad Chowdhury, Gabriel Terejanu,
- Abstract summary: In this work, we introduce a simple yet powerful approach, CGLearn, which relies on the agreement of gradients across various environments.
Our proposed method demonstrates superior performance compared to state-of-the-art methods in both linear and nonlinear settings.
Comprehensive experiments on both synthetic and real-world datasets highlight its effectiveness in diverse scenarios.
- Score: 0.7366405857677226
- License:
- Abstract: Improving generalization and achieving highly predictive, robust machine learning models necessitates learning the underlying causal structure of the variables of interest. A prominent and effective method for this is learning invariant predictors across multiple environments. In this work, we introduce a simple yet powerful approach, CGLearn, which relies on the agreement of gradients across various environments. This agreement serves as a powerful indication of reliable features, while disagreement suggests less reliability due to potential differences in underlying causal mechanisms. Our proposed method demonstrates superior performance compared to state-of-the-art methods in both linear and nonlinear settings across various regression and classification tasks. CGLearn shows robust applicability even in the absence of separate environments by exploiting invariance across different subsamples of observational data. Comprehensive experiments on both synthetic and real-world datasets highlight its effectiveness in diverse scenarios. Our findings underscore the importance of leveraging gradient agreement for learning causal invariance, providing a significant step forward in the field of robust machine learning. The source code of the linear and nonlinear implementation of CGLearn is open-source and available at: https://github.com/hasanjawad001/CGLearn.
Related papers
- Understanding the Role of Equivariance in Self-supervised Learning [51.56331245499712]
equivariant self-supervised learning (E-SSL) learns features to be augmentation-aware.
We identify a critical explaining-away effect in E-SSL that creates a synergy between the equivariant and classification tasks.
We reveal several principles for practical designs of E-SSL.
arXiv Detail & Related papers (2024-11-10T16:09:47Z) - The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing [9.551225697705199]
This paper studies the implicit bias of Gradient Descent (SGD) over heterogeneous data and shows that the implicit bias drives the model learning towards an invariant solution.
Specifically, we theoretically investigate the multi-environment low-rank matrix sensing problem where in each environment, the signal comprises (i) a lower-rank invariant part shared across all environments; and (ii) a significantly varying environment-dependent spurious component.
The key insight is, through simply employing the large step size large-batch SGD sequentially in each environment without any explicit regularization, the oscillation caused by heterogeneity can provably prevent model learning spurious signals.
arXiv Detail & Related papers (2024-03-03T07:38:24Z) - Variational Self-Supervised Contrastive Learning Using Beta Divergence [0.0]
We present a contrastive self-supervised learning method which is robust to data noise, grounded in the domain of variational methods.
We demonstrate the effectiveness of the proposed method through rigorous experiments including linear evaluation and fine-tuning scenarios with multi-label datasets in the face understanding domain.
arXiv Detail & Related papers (2023-09-05T17:21:38Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Mixed Semi-Supervised Generalized-Linear-Regression with applications to Deep-Learning and Interpolators [6.537685198688539]
We present a methodology for using unlabeled data to design semi supervised learning (SSL) methods.
We include in each of them a mixing parameter $alpha$, controlling the weight given to the unlabeled data.
We demonstrate the effectiveness of our methodology in delivering substantial improvement compared to the standard supervised models.
arXiv Detail & Related papers (2023-02-19T09:55:18Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.