Gradient-Optimized Fuzzy Classifier: A Benchmark Study Against State-of-the-Art Models
- URL: http://arxiv.org/abs/2504.16263v1
- Date: Tue, 22 Apr 2025 20:47:06 GMT
- Title: Gradient-Optimized Fuzzy Classifier: A Benchmark Study Against State-of-the-Art Models
- Authors: Magnus Sieverding, Nathan Steffen, Kelly Cohen,
- Abstract summary: This paper presents a performance benchmarking study of a Gradient-d Fuzzy Inference System (GF) against several state-of-the-art machine learning models.<n>Results demonstrate that the GF model achieved competitive, and in several cases superior, classification accuracy while maintaining high precision and exceptionally low training times.<n>These findings support the potential of gradient optimized fuzzy systems as interpretable, efficient, and adaptable alternatives to more complex deep learning models in supervised learning tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a performance benchmarking study of a Gradient-Optimized Fuzzy Inference System (GF) classifier against several state-of-the-art machine learning models, including Random Forest, XGBoost, Logistic Regression, Support Vector Machines, and Neural Networks. The evaluation was conducted across five datasets from the UCI Machine Learning Repository, each chosen for their diversity in input types, class distributions, and classification complexity. Unlike traditional Fuzzy Inference Systems that rely on derivative-free optimization methods, the GF leverages gradient descent to significantly improving training efficiency and predictive performance. Results demonstrate that the GF model achieved competitive, and in several cases superior, classification accuracy while maintaining high precision and exceptionally low training times. In particular, the GF exhibited strong consistency across folds and datasets, underscoring its robustness in handling noisy data and variable feature sets. These findings support the potential of gradient optimized fuzzy systems as interpretable, efficient, and adaptable alternatives to more complex deep learning models in supervised learning tasks.
Related papers
- CGLearn: Consistent Gradient-Based Learning for Out-of-Distribution Generalization [0.7366405857677226]
In this work, we introduce a simple yet powerful approach, CGLearn, which relies on the agreement of gradients across various environments.
Our proposed method demonstrates superior performance compared to state-of-the-art methods in both linear and nonlinear settings.
Comprehensive experiments on both synthetic and real-world datasets highlight its effectiveness in diverse scenarios.
arXiv Detail & Related papers (2024-11-09T02:36:39Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - MISS: Multiclass Interpretable Scoring Systems [13.902264070785986]
We present a machine-learning approach for constructing Multiclass Interpretable Scoring Systems (MISS)
MISS is a fully data-driven methodology for single, sparse, and user-friendly scoring systems for multiclass classification problems.
Results indicate that our approach is competitive with other machine learning models in terms of classification performance metrics and provides well-calibrated class probabilities.
arXiv Detail & Related papers (2024-01-10T10:57:12Z) - Latent Alignment with Deep Set EEG Decoders [44.128689862889715]
We introduce the Latent Alignment method that won the Benchmarks for EEG Transfer Learning competition.
We present its formulation as a deep set applied on the set of trials from a given subject.
Our experimental results show that performing statistical distribution alignment at later stages in a deep learning model is beneficial to the classification accuracy.
arXiv Detail & Related papers (2023-11-29T12:40:45Z) - Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning [5.67478985222587]
We propose a modular framework trained with a bio-inspired variant of contrastive predictive coding, comprising parallel encoders that leverage different invariant visual descriptors as inductive biases.<n>Our findings indicate that this form of inductive bias significantly improves the robustness of learned representations and narrows the performance gap between models.
arXiv Detail & Related papers (2023-11-22T07:58:14Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Graph Embedded Intuitionistic Fuzzy Random Vector Functional Link Neural
Network for Class Imbalance Learning [4.069144210024564]
We propose a graph embedded intuitionistic fuzzy RVFL for class imbalance learning (GE-IFRVFL-CIL) model incorporating a weighting mechanism to handle imbalanced datasets.
The proposed GE-IFRVFL-CIL model offers a promising solution to address the class imbalance issue, mitigates the detrimental effect of noise and outliers, and preserves the inherent geometrical structures of the dataset.
arXiv Detail & Related papers (2023-07-15T20:45:45Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.