論文の概要: Deep Nonparametric Conditional Independence Tests for Images
- arxiv url: http://arxiv.org/abs/2411.06140v1
- Date: Sat, 09 Nov 2024 10:33:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:34.539644
- Title: Deep Nonparametric Conditional Independence Tests for Images
- Title(参考訳): 画像の深部非パラメトリック条件独立性試験
- Authors: Marco Simnacher, Xiangnan Xu, Hani Park, Christoph Lippert, Sonja Greven,
- Abstract要約: 条件独立テスト(CIT)は、変数間の条件依存性をテストする。
複素高次元変数に対する深度非パラメトリックCIT(DNCIT)を導入する。
我々は、英国バイオバンク(UKB)の健常人の脳MRIスキャンと行動特性にDNCITを適用する。
- 参考スコア(独自算出の注目度): 5.466732067889031
- License:
- Abstract: Conditional independence tests (CITs) test for conditional dependence between random variables. As existing CITs are limited in their applicability to complex, high-dimensional variables such as images, we introduce deep nonparametric CITs (DNCITs). The DNCITs combine embedding maps, which extract feature representations of high-dimensional variables, with nonparametric CITs applicable to these feature representations. For the embedding maps, we derive general properties on their parameter estimators to obtain valid DNCITs and show that these properties include embedding maps learned through (conditional) unsupervised or transfer learning. For the nonparametric CITs, appropriate tests are selected and adapted to be applicable to feature representations. Through simulations, we investigate the performance of the DNCITs for different embedding maps and nonparametric CITs under varying confounder dimensions and confounder relationships. We apply the DNCITs to brain MRI scans and behavioral traits, given confounders, of healthy individuals from the UK Biobank (UKB), confirming null results from a number of ambiguous personality neuroscience studies with a larger data set and with our more powerful tests. In addition, in a confounder control study, we apply the DNCITs to brain MRI scans and a confounder set to test for sufficient confounder control, leading to a potential reduction in the confounder dimension under improved confounder control compared to existing state-of-the-art confounder control studies for the UKB. Finally, we provide an R package implementing the DNCITs.
- Abstract(参考訳): 条件独立テスト(CIT)は、変数間の条件依存性をテストする。
既存のCITは画像などの複雑な高次元変数に適用可能であるため、深度非パラメトリックCIT(DNCIT)を導入する。
DNCITは、高次元変数の特徴表現を抽出する埋め込み写像と、これらの特徴表現に適用可能な非パラメトリックCITを組み合わせる。
埋め込みマップについては,パラメータ推定器の一般特性を導出して有効なDNCITを得るとともに,(条件付き)教師なしあるいは伝達学習を通じて学習した埋め込みマップを含むことを示す。
非パラメトリックCITでは、適切なテストが選択され、特徴表現に適用できるように適合する。
シミュレーションにより, 異なる埋め込みマップと非パラメトリックCITに対して, 様々な共同設立次元と共同設立関係の下でのDNCITの性能について検討した。
我々は、英国バイオバンク(UKB)の健康な個人の脳MRIスキャンと行動特性にDNCITを適用し、より大きなデータセットとより強力なテストによって、多くの曖昧なパーソナリティ神経科学研究の無効な結果を確認した。
さらに、共同ファウンダーコントロール研究では、脳MRIスキャンにDNCITを適用し、共同ファウンダーが十分な共同ファウンダーコントロールをテストすることで、既存の最先端の共同ファウンダーコントロール研究と比較して、共同ファウンダーコントロールの改善の下で共同ファウンダーの次元が減少する可能性がある。
最後に、DNCITを実装したRパッケージを提供する。
関連論文リスト
- EVENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI [5.757390718589337]
拡散MRIを用いた解剖学的脳解析のためのEvidence-based Ensemble Neural Network, EVENetを開発した。
健常層および臨床集団の異なるデータセットの正確なパーセレーションと不確実性の推定値を得た。
この不確実性評価により,EVENet法は病変症例の異常脳領域の検出に有効であることが示された。
論文 参考訳(メタデータ) (2024-09-11T05:26:23Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Conditional Independence Testing via Latent Representation Learning [2.566492438263125]
LCIT(Latent representation based Conditional Independence Test)は、表現学習に基づく条件付き独立テストのための新しい非パラメトリック手法である。
我々の主な貢献は、Z が与えられた X と Y の独立性をテストするための生成的枠組みの提案である。
論文 参考訳(メタデータ) (2022-09-04T07:16:03Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging [0.4310985013483366]
畳み込みニューラルネットワーク(CNN)は精度を改善し、演算時間を短縮する。
U-net CNNを用いた深層学習マウス脳抽出ツールを開発した。
240のマルチモーダルMRIデータセット上で,典型的なU-netモデルをトレーニングし,検証し,テストした。
論文 参考訳(メタデータ) (2022-03-11T02:00:27Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients [31.567542945171834]
脳腫瘍シーケンス登録(BraTS-Reg)の課題について述べる。
BraTS-Regは、変形可能な登録アルゴリズムのための最初の公開ベンチマーク環境である。
BraTS-Regの目的は、引き続き研究の活発な資源として機能することである。
論文 参考訳(メタデータ) (2021-12-13T19:25:16Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
複雑な値を持つガウスのメカニズムを導入し、その振る舞いは$f$-DP、$(varepsilon, delta)$-DP、R'enyi-DPで特徴づけられる。
本稿では,DPと互換性のある複雑なニューラルネットワークプリミティブを提案する。
実験では,実世界の課題に対して,DPを用いた複合数値ニューラルネットワークを訓練することで概念実証を行う。
論文 参考訳(メタデータ) (2021-10-07T14:03:00Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - An Explainable Model for EEG Seizure Detection based on Connectivity
Features [0.0]
我々は、特定のデータウィンドウが発作に属しているか否かを検出するディープニューラルネットワークを学習することを提案する。
10個のサブウィンドウのシーケンスとしてデータを取り込み、注意、CNN、BiLstm、および完全に接続されたレイヤを用いて最適なディープラーニングモデルを設計することを目的としている。
私たちの最高のモデルアーキテクチャは、バランスの取れたMITBIHデータサブセットを使用して97.03%の精度を実現した。
論文 参考訳(メタデータ) (2020-09-26T11:07:30Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。