AI-Compass: A Comprehensive and Effective Multi-module Testing Tool for AI Systems
- URL: http://arxiv.org/abs/2411.06146v1
- Date: Sat, 09 Nov 2024 11:15:17 GMT
- Title: AI-Compass: A Comprehensive and Effective Multi-module Testing Tool for AI Systems
- Authors: Zhiyu Zhu, Zhibo Jin, Hongsheng Hu, Minhui Xue, Ruoxi Sun, Seyit Camtepe, Praveen Gauravaram, Huaming Chen,
- Abstract summary: In this study, we design and implement a testing tool, tool, to comprehensively and effectively evaluate AI systems.
The tool extensively assesses adversarial robustness, model interpretability, and performs neuron analysis.
Our research sheds light on a general solution for AI systems testing landscape.
- Score: 26.605694684145313
- License:
- Abstract: AI systems, in particular with deep learning techniques, have demonstrated superior performance for various real-world applications. Given the need for tailored optimization in specific scenarios, as well as the concerns related to the exploits of subsurface vulnerabilities, a more comprehensive and in-depth testing AI system becomes a pivotal topic. We have seen the emergence of testing tools in real-world applications that aim to expand testing capabilities. However, they often concentrate on ad-hoc tasks, rendering them unsuitable for simultaneously testing multiple aspects or components. Furthermore, trustworthiness issues arising from adversarial attacks and the challenge of interpreting deep learning models pose new challenges for developing more comprehensive and in-depth AI system testing tools. In this study, we design and implement a testing tool, \tool, to comprehensively and effectively evaluate AI systems. The tool extensively assesses multiple measurements towards adversarial robustness, model interpretability, and performs neuron analysis. The feasibility of the proposed testing tool is thoroughly validated across various modalities, including image classification, object detection, and text classification. Extensive experiments demonstrate that \tool is the state-of-the-art tool for a comprehensive assessment of the robustness and trustworthiness of AI systems. Our research sheds light on a general solution for AI systems testing landscape.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - SONAR: A Synthetic AI-Audio Detection Framework and Benchmark [59.09338266364506]
SONAR is a synthetic AI-Audio Detection Framework and Benchmark.
It aims to provide a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content.
It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based deepfake detection systems.
arXiv Detail & Related papers (2024-10-06T01:03:42Z) - The Role of Artificial Intelligence and Machine Learning in Software Testing [0.14896196009851972]
Artificial Intelligence (AI) and Machine Learning (ML) have significantly impacted various industries.
Software testing, a crucial part of the software development lifecycle (SDLC), ensures the quality and reliability of software products.
This paper explores the role of AI and ML in software testing by reviewing existing literature, analyzing current tools and techniques, and presenting case studies.
arXiv Detail & Related papers (2024-09-04T13:25:13Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
We introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities.
These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage.
Our evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration.
arXiv Detail & Related papers (2024-06-18T16:20:53Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Integration of cognitive tasks into artificial general intelligence test
for large models [54.72053150920186]
We advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests.
The cognitive science-inspired AGI tests encompass the full spectrum of intelligence facets, including crystallized intelligence, fluid intelligence, social intelligence, and embodied intelligence.
arXiv Detail & Related papers (2024-02-04T15:50:42Z) - Towards Reliable AI: Adequacy Metrics for Ensuring the Quality of
System-level Testing of Autonomous Vehicles [5.634825161148484]
We introduce a set of black-box test adequacy metrics called "Test suite Instance Space Adequacy" (TISA) metrics.
The TISA metrics offer a way to assess both the diversity and coverage of the test suite and the range of bugs detected during testing.
We evaluate the efficacy of the TISA metrics by examining their correlation with the number of bugs detected in system-level simulation testing of AVs.
arXiv Detail & Related papers (2023-11-14T10:16:05Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Constrained Adversarial Learning and its applicability to Automated
Software Testing: a systematic review [0.0]
This systematic review is focused on the current state-of-the-art of constrained data generation methods applied for adversarial learning and software testing.
It aims to guide researchers and developers to enhance testing tools with adversarial learning methods and improve the resilience and robustness of their digital systems.
arXiv Detail & Related papers (2023-03-14T00:27:33Z) - Tools and Practices for Responsible AI Engineering [0.5249805590164901]
We present two new software libraries that address critical needs for responsible AI engineering.
hydra-zen dramatically simplifies the process of making complex AI applications, and their behaviors reproducible.
The rAI-toolbox is designed to enable methods for evaluating and enhancing the robustness of AI-models.
arXiv Detail & Related papers (2022-01-14T19:47:46Z) - Test and Evaluation Framework for Multi-Agent Systems of Autonomous
Intelligent Agents [0.0]
We consider the challenges of developing a unifying test and evaluation framework for complex ensembles of cyber-physical systems with embedded artificial intelligence.
We propose a framework that incorporates test and evaluation throughout not only the development life cycle, but continues into operation as the system learns and adapts.
arXiv Detail & Related papers (2021-01-25T21:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.