論文の概要: Advanced Wildfire Prediction in Morocco: Developing a Deep Learning Dataset from Multisource Observations
- arxiv url: http://arxiv.org/abs/2411.06202v1
- Date: Sat, 09 Nov 2024 15:01:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:34.571805
- Title: Advanced Wildfire Prediction in Morocco: Developing a Deep Learning Dataset from Multisource Observations
- Title(参考訳): モロッコの先進的な山火事予測:マルチソース観測による深層学習データセットの開発
- Authors: Ayoub Jadouli, Chaker El Amrani,
- Abstract要約: 本研究ではモロッコの山火事予測に特化して設計された,新しい包括的データセットを紹介する。
植生の健康度(NDVI)、人口密度、土壌水分量、気象データなどの重要な環境指標をまとめた。
予備的な結果は、このデータセットを用いたモデルが最大90%の精度を達成し、予測能力を著しく改善していることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Wildfires pose significant threats to ecosystems, economies, and communities worldwide, necessitating advanced predictive methods for effective mitigation. This study introduces a novel and comprehensive dataset specifically designed for wildfire prediction in Morocco, addressing its unique geographical and climatic challenges. By integrating satellite observations and ground station data, we compile essential environmental indicators such as vegetation health (NDVI), population density, soil moisture levels, and meteorological data aimed at predicting next-day wildfire occurrences with high accuracy. Our methodology incorporates state-of-the-art machine learning and deep learning algorithms, demonstrating superior performance in capturing wildfire dynamics compared to traditional models. Preliminary results show that models using this dataset achieve an accuracy of up to 90%, significantly improving prediction capabilities. The public availability of this dataset fosters scientific collaboration, aiming to refine predictive models and develop innovative wildfire management strategies. Our work not only advances the technical field of dataset creation but also emphasizes the necessity for localized research in underrepresented regions, providing a scalable model for other areas facing similar environmental challenges.
- Abstract(参考訳): 森林火災は世界中の生態系、経済、地域社会に重大な脅威をもたらし、効果的な緩和のための先進的な予測方法を必要としている。
本研究では,モロッコにおける山火事の予測に特化して設計された,新しい総合的なデータセットを紹介し,その地理的・気候的課題に対処する。
衛星観測データと地上局データを統合することで,次の山火事の発生を高精度に予測することを目的とした,植生の健康,人口密度,土壌水分量,気象データなどの重要な環境指標をコンパイルする。
我々の手法は最先端の機械学習とディープラーニングアルゴリズムを取り入れており、従来のモデルと比較して、山火事のダイナミクスを捕捉する際の優れた性能を実証している。
予備的な結果は、このデータセットを用いたモデルが最大90%の精度を達成し、予測能力を著しく改善していることを示している。
このデータセットの公開は、予測モデルを洗練し、革新的な山火事管理戦略を開発することを目的として、科学的協力を促進する。
我々の研究は、データセット作成の技術的分野を前進させるだけでなく、未表現領域におけるローカライズされた研究の必要性を強調し、同様の環境問題に直面している他の分野のスケーラブルなモデルを提供する。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Enhancing Wildfire Forecasting Through Multisource Spatio-Temporal Data, Deep Learning, Ensemble Models and Transfer Learning [0.0]
本稿では,衛星データアルゴリズムとディープラーニング技術の適用を含むマルチソースアンサンブルデータの統合を通じて,山火事予測の新しいアプローチを提案する。
主な焦点は、山火事の予測において、人的活動における気象シーケンスの重要性と、特定の気象パラメータを理解することである。
論文 参考訳(メタデータ) (2024-07-20T02:00:13Z) - Seasonal Fire Prediction using Spatio-Temporal Deep Neural Networks [2.748450182087935]
We use SeasFire, a comprehensive global wildfire data with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning。
予測分析のために、野火の時間的文脈を捉えた異なるアーキテクチャでディープラーニングモデルを訓練する。
本研究は,季節火災予報における深層学習モデルの可能性を示すものである。
論文 参考訳(メタデータ) (2024-04-09T16:28:54Z) - Explainable Global Wildfire Prediction Models using Graph Neural
Networks [2.2389592950633705]
本稿では,グローバルな山火事予測のための革新的なグラフニューラルネットワーク(GNN)モデルを提案する。
我々のアプローチは、地球温暖化や山火事のデータをグラフ表現に変換し、ヌル海洋データロケーションのような課題に対処します。
論文 参考訳(メタデータ) (2024-02-11T10:44:41Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
森林火災は人間や動物の生活、生態系、社会経済の安定に重大な脅威をもたらす。
本研究では、FLOGA(Forest wiLdfire Observations for the Greek Area)と名付けた機械学習可能なデータセットを作成し、導入する。
このデータセットは、山火事の前後に取得された衛星画像からなるため、ユニークなものである。
我々はFLOGAを用いて、複数の機械学習アルゴリズムとディープラーニングアルゴリズムの徹底的な比較を行い、バーント領域の自動抽出を行う。
論文 参考訳(メタデータ) (2023-11-06T18:42:05Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
本研究では,現実の道路環境に対する確率論的予測世界モデル学習のためのフレームワークを提案する。
従来の手法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
論文 参考訳(メタデータ) (2023-01-12T02:07:26Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
我々は、深層ニューラルネットワークを用いて、米国西部の5か所の将来の山火事予測のための動的モデルを作成します。
提案モデルには,動的オンライン推定や時系列モデリングなど,予測評価における特徴的ニーズに対処する特徴がある。
論文 参考訳(メタデータ) (2021-11-28T03:21:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。