論文の概要: Advancing Eurasia Fire Understanding Through Machine Learning Techniques
- arxiv url: http://arxiv.org/abs/2502.17023v1
- Date: Mon, 24 Feb 2025 10:22:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:00.990975
- Title: Advancing Eurasia Fire Understanding Through Machine Learning Techniques
- Title(参考訳): 機械学習技術によるユーラシア火災理解の促進
- Authors: Boris Kriuk,
- Abstract要約: 我々はロシアの山火事分析で利用可能な最も広範なデータセットの1つを提示し、13ヶ月連続で観測を行った。
調査データ分析を行い、様々な火災カテゴリや生態系にまたがる主要な火災行動パターンを特定するための予測モデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Modern fire management systems increasingly rely on satellite data and weather forecasting; however, access to comprehensive datasets remains limited due to proprietary restrictions. Despite the ecological significance of wildfires, large-scale, multi-regional research is constrained by data scarcity. Russian diverse ecosystems play a crucial role in shaping Eurasian fire dynamics, yet they remain underexplored. This study addresses existing gaps by introducing an open-access dataset that captures detailed fire incidents alongside corresponding meteorological conditions. We present one of the most extensive datasets available for wildfire analysis in Russia, covering 13 consecutive months of observations. Leveraging machine learning techniques, we conduct exploratory data analysis and develop predictive models to identify key fire behavior patterns across different fire categories and ecosystems. Our results highlight the critical influence of environmental factor patterns on fire occurrence and spread behavior. By improving the understanding of wildfire dynamics in Eurasia, this work contributes to more effective, data-driven approaches for proactive fire management in the face of evolving environmental conditions.
- Abstract(参考訳): 現代の消防システムは衛星データと天気予報にますます依存しているが、プロプライエタリな制約のため、包括的なデータセットへのアクセスは制限されている。
森林火災の生態学的重要性にもかかわらず、大規模で多地域的な研究はデータ不足によって制限されている。
ロシアの多様な生態系はユーラシアの火災力学を形作る上で重要な役割を担っている。
本研究では,気象条件とともに詳細な火災を捉えるオープンアクセスデータセットを導入することで,既存のギャップに対処する。
我々はロシアの山火事分析で利用可能な最も広範なデータセットの1つを提示し、13ヶ月連続で観測を行った。
機械学習技術を活用することで、探索的なデータ分析を行い、さまざまな火のカテゴリやエコシステムにまたがる主要な火の行動パターンを特定する予測モデルを開発する。
本研究は, 火災発生および拡散行動に及ぼす環境因子パターンの影響を明らかにするものである。
ユーラシアにおける山火事の動態の理解を深めることにより、この研究は、進化する環境条件に直面した積極的火災管理のための、より効果的でデータ駆動的なアプローチに寄与する。
関連論文リスト
- Advanced Wildfire Prediction in Morocco: Developing a Deep Learning Dataset from Multisource Observations [0.0]
本研究ではモロッコの山火事予測に特化して設計された,新しい包括的データセットを紹介する。
植生の健康度(NDVI)、人口密度、土壌水分量、気象データなどの重要な環境指標をまとめた。
予備的な結果は、このデータセットを用いたモデルが最大90%の精度を達成し、予測能力を著しく改善していることを示している。
論文 参考訳(メタデータ) (2024-11-09T15:01:12Z) - Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
本研究は,過去12年間のオーストラリアにおける森林火災の深刻度を詳細に分析した。
ランドサット画像を活用し,NDVI,NBR,バーン指数などのスペクトル指標と地形的・気候的要因を併用することにより,ロバストな予測モデルを構築した。
このモデルは86.13%の精度を達成し、様々なオーストラリアの生態系で火災の深刻度を予測する効果を示した。
論文 参考訳(メタデータ) (2024-09-18T04:57:48Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
強化学習のための新しいフレームワークVACERL(Variable-Agnostic Causal Exploration for Reinforcement Learning)を導入する。
本手法は,注目機構を用いて,重要変数に関連する重要な観測行動ステップを自動的に同定する。
これらのステップを接続する因果グラフを構築し、エージェントをタスク完了に対する因果的影響の大きい観察-作用ペアへと導く。
論文 参考訳(メタデータ) (2024-07-17T09:45:27Z) - Decision support system for Forest fire management using Ontology with Big Data and LLMs [0.8668211481067458]
火災リスクを評価し、資源需要を予測する火災指標が不可欠である。
医療や環境モニタリングなどの分野におけるセンサネットワークの増加に伴い、セマンティックセンサーネットワークは、気候データ収集にますます利用されている。
本稿では,Apache Sparkによる森林火災の早期検出,気象・地理データによる火災リスク予測の強化について論じる。
論文 参考訳(メタデータ) (2024-05-18T17:30:30Z) - Seasonal Fire Prediction using Spatio-Temporal Deep Neural Networks [2.748450182087935]
We use SeasFire, a comprehensive global wildfire data with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning。
予測分析のために、野火の時間的文脈を捉えた異なるアーキテクチャでディープラーニングモデルを訓練する。
本研究は,季節火災予報における深層学習モデルの可能性を示すものである。
論文 参考訳(メタデータ) (2024-04-09T16:28:54Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Deep Learning for Global Wildfire Forecasting [1.6929753878977016]
我々は,世界規模の火災データセットを作成し,世界規模の火災発生地域をサブシーズン規模で予測するプロトタイプを実証する。
本稿では,季節・季節の消防車に関連する様々な変数を含む,オープンアクセスのグローバル分析対応データキューブを提案する。
我々は,地球規模の山火事予測をイメージセグメンテーションタスクとして扱う深層学習モデルを訓練し,その前に焼かれた8,16,32,64日間の存在を巧みに予測する。
論文 参考訳(メタデータ) (2022-11-01T15:39:01Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
本研究では,山火事の動態について,動的コミュニティ構造が明らかにする情報について検討する。
アマゾン盆地の火災イベントのMODISデータセットを用いた実験を行った。
以上の結果から,年間を通じて観測される山火事のパターンを明らかにすることが可能であることが示唆された。
論文 参考訳(メタデータ) (2020-11-02T17:31:47Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
因果発見は人間の認知の中心にある。
本研究では,ビデオの因果発見の課題を,地層構造を監督せずにエンドツーエンドで検討する。
論文 参考訳(メタデータ) (2020-07-01T17:29:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。