Advanced Wildfire Prediction in Morocco: Developing a Deep Learning Dataset from Multisource Observations
- URL: http://arxiv.org/abs/2411.06202v1
- Date: Sat, 09 Nov 2024 15:01:12 GMT
- Title: Advanced Wildfire Prediction in Morocco: Developing a Deep Learning Dataset from Multisource Observations
- Authors: Ayoub Jadouli, Chaker El Amrani,
- Abstract summary: This study introduces a novel and comprehensive dataset specifically designed for wildfire prediction in Morocco.
We compile essential environmental indicators such as vegetation health (NDVI), population density, soil moisture levels, and meteorological data.
Preliminary results show that models using this dataset achieve an accuracy of up to 90%, significantly improving prediction capabilities.
- Score: 0.0
- License:
- Abstract: Wildfires pose significant threats to ecosystems, economies, and communities worldwide, necessitating advanced predictive methods for effective mitigation. This study introduces a novel and comprehensive dataset specifically designed for wildfire prediction in Morocco, addressing its unique geographical and climatic challenges. By integrating satellite observations and ground station data, we compile essential environmental indicators such as vegetation health (NDVI), population density, soil moisture levels, and meteorological data aimed at predicting next-day wildfire occurrences with high accuracy. Our methodology incorporates state-of-the-art machine learning and deep learning algorithms, demonstrating superior performance in capturing wildfire dynamics compared to traditional models. Preliminary results show that models using this dataset achieve an accuracy of up to 90%, significantly improving prediction capabilities. The public availability of this dataset fosters scientific collaboration, aiming to refine predictive models and develop innovative wildfire management strategies. Our work not only advances the technical field of dataset creation but also emphasizes the necessity for localized research in underrepresented regions, providing a scalable model for other areas facing similar environmental challenges.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Enhancing Wildfire Forecasting Through Multisource Spatio-Temporal Data, Deep Learning, Ensemble Models and Transfer Learning [0.0]
This paper presents a novel approach in wildfire prediction through the integration of multisource ensemble data, including satellite data algorithms and the application of deep learning techniques.
The key focus is on understanding the significance of weather sequences human activities, and specific weather parameters in wildfire prediction.
arXiv Detail & Related papers (2024-07-20T02:00:13Z) - Seasonal Fire Prediction using Spatio-Temporal Deep Neural Networks [2.748450182087935]
We utilize SeasFire, a comprehensive global wildfire dataset with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning.
For the predictive analysis, we train deep learning models with different architectures that capture wildfire-temporal context.
Our findings demonstrate the great potential of deep learning models in seasonal fire forecasting.
arXiv Detail & Related papers (2024-04-09T16:28:54Z) - Explainable Global Wildfire Prediction Models using Graph Neural
Networks [2.2389592950633705]
We introduce an innovative Graph Neural Network (GNN)-based model for global wildfire prediction.
Our approach transforms global climate and wildfire data into a graph representation, addressing challenges such as null oceanic data locations.
arXiv Detail & Related papers (2024-02-11T10:44:41Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
Wildfires pose significant threats to human and animal lives, ecosystems, and socio-economic stability.
In this work, we create and introduce a machine-learning ready dataset we name FLOGA (Forest wiLdfire Observations for the Greek Area)
This dataset is unique as it comprises of satellite imagery acquired before and after a wildfire event.
We use FLOGA to provide a thorough comparison of multiple Machine Learning and Deep Learning algorithms for the automatic extraction of burnt areas.
arXiv Detail & Related papers (2023-11-06T18:42:05Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
We create a dynamic model for future wildfire predictions of five locations within the western United States through a deep neural network.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2021-11-28T03:21:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.