Advancing Eurasia Fire Understanding Through Machine Learning Techniques
- URL: http://arxiv.org/abs/2502.17023v1
- Date: Mon, 24 Feb 2025 10:22:17 GMT
- Title: Advancing Eurasia Fire Understanding Through Machine Learning Techniques
- Authors: Boris Kriuk,
- Abstract summary: We present one of the most extensive datasets available for wildfire analysis in Russia, covering 13 consecutive months of observations.<n>We conduct exploratory data analysis and develop predictive models to identify key fire behavior patterns across different fire categories and ecosystems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern fire management systems increasingly rely on satellite data and weather forecasting; however, access to comprehensive datasets remains limited due to proprietary restrictions. Despite the ecological significance of wildfires, large-scale, multi-regional research is constrained by data scarcity. Russian diverse ecosystems play a crucial role in shaping Eurasian fire dynamics, yet they remain underexplored. This study addresses existing gaps by introducing an open-access dataset that captures detailed fire incidents alongside corresponding meteorological conditions. We present one of the most extensive datasets available for wildfire analysis in Russia, covering 13 consecutive months of observations. Leveraging machine learning techniques, we conduct exploratory data analysis and develop predictive models to identify key fire behavior patterns across different fire categories and ecosystems. Our results highlight the critical influence of environmental factor patterns on fire occurrence and spread behavior. By improving the understanding of wildfire dynamics in Eurasia, this work contributes to more effective, data-driven approaches for proactive fire management in the face of evolving environmental conditions.
Related papers
- Fire and Smoke Datasets in 20 Years: An In-depth Review [3.865779317336744]
Fire and smoke phenomena pose a significant threat to the natural environment, ecosystems, and global economy, as well as human lives and wildlife.
There is a demand for more sophisticated and advanced technologies to implement an effective strategy for early detection, real-time monitoring, and minimizing the overall impacts of fires on ecological balance and public safety.
These systems extensively rely on the availability of adequate and high-quality fire and smoke data to create proficient Machine Learning (ML) methods for various tasks, such as detection and monitoring.
arXiv Detail & Related papers (2025-03-17T22:08:02Z) - Advanced Wildfire Prediction in Morocco: Developing a Deep Learning Dataset from Multisource Observations [0.0]
This study introduces a novel and comprehensive dataset specifically designed for wildfire prediction in Morocco.
We compile essential environmental indicators such as vegetation health (NDVI), population density, soil moisture levels, and meteorological data.
Preliminary results show that models using this dataset achieve an accuracy of up to 90%, significantly improving prediction capabilities.
arXiv Detail & Related papers (2024-11-09T15:01:12Z) - Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years.
By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model.
The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems.
arXiv Detail & Related papers (2024-09-18T04:57:48Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - Decision support system for Forest fire management using Ontology with Big Data and LLMs [0.8668211481067458]
Fire weather indices, which assess wildfire risk and predict resource demands, are vital.
With the rise of sensor networks in fields like healthcare and environmental monitoring, semantic sensor networks are increasingly used to gather climatic data.
This paper discusses using Apache Spark for early forest fire detection, enhancing fire risk prediction with meteorological and geographical data.
arXiv Detail & Related papers (2024-05-18T17:30:30Z) - Seasonal Fire Prediction using Spatio-Temporal Deep Neural Networks [2.748450182087935]
We utilize SeasFire, a comprehensive global wildfire dataset with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning.
For the predictive analysis, we train deep learning models with different architectures that capture wildfire-temporal context.
Our findings demonstrate the great potential of deep learning models in seasonal fire forecasting.
arXiv Detail & Related papers (2024-04-09T16:28:54Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.