Multistage non-deterministic classification using secondary concept graphs and graph convolutional networks for high-level feature extraction
- URL: http://arxiv.org/abs/2411.06212v1
- Date: Sat, 09 Nov 2024 15:28:45 GMT
- Title: Multistage non-deterministic classification using secondary concept graphs and graph convolutional networks for high-level feature extraction
- Authors: Masoud Kargar, Nasim Jelodari, Alireza Assadzadeh,
- Abstract summary: In domains with diverse topics, graph representations illustrate interrelations among features.
Despite achievements, predicting and assigning 9 deterministic classes often involves errors.
We present a multi-stage non-deterministic classification method based on a secondary conceptual graph and graph convolutional networks.
- Score: 0.0
- License:
- Abstract: Graphs, comprising nodes and edges, visually depict relationships and structures, posing challenges in extracting high-level features due to their intricate connections. Multiple connections introduce complexities in discovering patterns, where node weights may affect some features more than others. In domains with diverse topics, graph representations illustrate interrelations among features. Pattern discovery within graphs is recognized as NP-hard. Graph Convolutional Networks (GCNs) are a prominent deep learning approach for acquiring meaningful representations by leveraging node connectivity and characteristics. Despite achievements, predicting and assigning 9 deterministic classes often involves errors. To address this challenge, we present a multi-stage non-deterministic classification method based on a secondary conceptual graph and graph convolutional networks, which includes distinct steps: 1) leveraging GCN for the extraction and generation of 12 high-level features: 2) employing incomplete, non-deterministic models for feature extraction, conducted before reaching a definitive prediction: and 3) formulating definitive forecasts grounded in conceptual (logical) graphs. The empirical findings indicate that our proposed approach outperforms contemporary methods in classification tasks. Across three datasets Cora, Citeseer, and PubMed the achieved accuracies are 96%, 93%, and 95%, respectively. Code is available at https://github.com/MasoudKargar.
Related papers
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - GRATIS: Deep Learning Graph Representation with Task-specific Topology
and Multi-dimensional Edge Features [27.84193444151138]
We propose the first general graph representation learning framework (called GRATIS)
It can generate a strong graph representation with a task-specific topology and task-specific multi-dimensional edge features from any arbitrary input.
Our framework is effective, robust and flexible, and is a plug-and-play module that can be combined with different backbones and Graph Neural Networks (GNNs)
arXiv Detail & Related papers (2022-11-19T18:42:55Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
We propose a new disentanglement enhancement framework for deep generative models for attributed graphs.
A novel variational objective is proposed to disentangle the above three types of latent factors, with novel architecture for node and edge deconvolutions.
Within each type, individual-factor-wise disentanglement is further enhanced, which is shown to be a generalization of the existing framework for images.
arXiv Detail & Related papers (2020-06-09T16:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.