Constraints and Variables Reduction for Optimal Power Flow Using Hierarchical Graph Neural Networks with Virtual Node-Splitting
- URL: http://arxiv.org/abs/2411.06268v1
- Date: Sat, 09 Nov 2024 19:46:28 GMT
- Title: Constraints and Variables Reduction for Optimal Power Flow Using Hierarchical Graph Neural Networks with Virtual Node-Splitting
- Authors: Thuan Phamh, Xingpeng Li,
- Abstract summary: Power system networks are often modeled as homogeneous graphs, which limits the ability of graph neural network (GNN) to capture individual generator features at the same nodes.
By introducing the proposed virtual node-splitting strategy, generator-level attributes like costs, limits, and ramp rates can be fully captured by GNN models.
Two-stage adaptive hierarchical GNN is developed to (i) predict critical lines that would be congested, and then (ii) predict base generators that would operate at the maximum capacity.
- Score: 0.24554686192257422
- License:
- Abstract: Power system networks are often modeled as homogeneous graphs, which limits the ability of graph neural network (GNN) to capture individual generator features at the same nodes. By introducing the proposed virtual node-splitting strategy, generator-level attributes like costs, limits, and ramp rates can be fully captured by GNN models, improving GNN's learning capacity and prediction accuracy. Optimal power flow (OPF) problem is used for real-time grid operations. Limited timeframe motivates studies to create size-reduced OPF (ROPF) models to relieve the computational complexity. In this paper, with virtual node-splitting, a novel two-stage adaptive hierarchical GNN is developed to (i) predict critical lines that would be congested, and then (ii) predict base generators that would operate at the maximum capacity. This will substantially reduce the constraints and variables needed for OPF, creating the proposed ROPFLG model with reduced monitor lines and reduced generator-specific variables and constraints. Two ROPF models, ROPFL and ROPFG, with just reduced lines or generators respectively, are also implemented as additional benchmark models. Case studies show that the proposed ROPFLG consistently outperforms the benchmark full OPF (FOPF) and the other two ROPF methods, achieving significant computational time savings while reliably finding optimal solutions.
Related papers
- Graph Neural Network-Accelerated Network-Reconfigured Optimal Power Flow [0.24554686192257422]
This paper proposes a machine learning (ML)-based approach, particularly utilizing graph neural network (GNN)
The GNN model is trained offline to predict the best topology before entering the optimization stage.
A fast online post-ML selection layer is also proposed to analyze GNN predictions and then select a subset of predicted NR solutions with high confidence.
arXiv Detail & Related papers (2024-10-22T22:35:09Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - N-1 Reduced Optimal Power Flow Using Augmented Hierarchical Graph Neural
Network [0.2900810893770134]
AHGNN-enabled N-1 ROPF can result in a remarkable reduction in computing time while retaining the solution quality.
Case studies prove the proposed AHGNN and the associated N-1 ROPF are highly effective in reducing computation time while preserving solution quality.
arXiv Detail & Related papers (2024-02-09T07:23:27Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning (FL) is a privacy-preserving distributed learning framework where a server aggregates models updated by multiple devices without accessing their private datasets.
In this paper, we introduce model pruning for HFL in wireless networks to reduce the neural network scale.
We show that our proposed HFL with model pruning achieves similar learning accuracy compared with the HFL without model pruning and reduces about 50 percent communication cost.
arXiv Detail & Related papers (2023-05-15T22:04:49Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Reduced Optimal Power Flow Using Graph Neural Network [0.5076419064097734]
This paper presents a new method to reduce the number of constraints in the original OPF problem using a graph neural network (GNN)
GNN is an innovative machine learning model that utilizes features from nodes, edges, and network topology to maximize its performance.
It is concluded that the application of GNN for ROPF is able to reduce computing time while retaining solution quality.
arXiv Detail & Related papers (2022-06-27T19:14:47Z) - Power Flow Balancing with Decentralized Graph Neural Networks [4.812718493682454]
We propose an end-to-end framework based on a Graph Neural Network (GNN) to balance the power flows in a generic grid.
The proposed framework is efficient and, compared to other solvers based on deep learning, is robust to perturbations not only to the physical quantities on the grid components, but also to the topology.
arXiv Detail & Related papers (2021-11-03T12:14:56Z) - Leveraging power grid topology in machine learning assisted optimal
power flow [0.5076419064097734]
Machine learning assisted optimal power flow (OPF) aims to reduce the computational complexity of non-linear and non- constrained power flow problems.
We assess the performance of a variety of FCNN, CNN and GNN models for two fundamental approaches to machine assisted OPF.
For several synthetic grids with interconnected utilities, we show that locality properties between feature and target variables are scarce.
arXiv Detail & Related papers (2021-10-01T10:39:53Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.