論文の概要: A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks
- arxiv url: http://arxiv.org/abs/2411.06284v1
- Date: Sat, 09 Nov 2024 20:56:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:53.114565
- Title: A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks
- Title(参考訳): 視覚言語課題における多モーダル大規模言語モデルに関する包括的調査と指針
- Authors: Chia Xin Liang, Pu Tian, Caitlyn Heqi Yin, Yao Yua, Wei An-Hou, Li Ming, Tianyang Wang, Ziqian Bi, Ming Liu,
- Abstract要約: MLLM(Large Language Model)は、テキスト、画像、ビデオ、オーディオを統合し、モーダルな理解と生成のためのAIシステムを実現する。
Bookは、スケーラビリティ、堅牢性、およびクロスモーダル学習における重要な課題に対処しながら、MLLM実装の顕著な点について検討している。
倫理的考察、責任あるAI開発、そして今後の方向性に関する議論をまとめると、この権威あるリソースは理論的な枠組みと実践的な洞察の両方を提供する。
- 参考スコア(独自算出の注目度): 5.0453036768975075
- License:
- Abstract: This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.
- Abstract(参考訳): MLLM(Multimodal large language model)に対するこの調査と応用ガイドは、MLLMの急速に発展している分野を探求し、アーキテクチャ、応用、AIおよび生成モデルへの影響を調査している。
基本的な概念から始めて、MLLMがテキスト、画像、ビデオ、オーディオなど、さまざまなデータタイプを統合する方法を調べて、複雑なAIシステムによる、クロスモーダルな理解と生成を可能にします。
視覚的なストーリーテリングからアクセシビリティの向上に至るまで、様々な分野におけるトレーニング方法やアーキテクチャコンポーネント、実践的な応用など、重要なトピックを取り上げている。
詳細なケーススタディと技術的分析を通じて、このテキストは、拡張性、堅牢性、およびクロスモーダル学習における重要な課題に対処しながら、著名なMLLM実装を調査している。
倫理的考察、責任あるAI開発、そして今後の方向性に関する議論をまとめると、この権威あるリソースは理論的な枠組みと実践的な洞察の両方を提供する。
MLLMの開発と展開の機会と課題について、バランスのとれた視点を提供しており、自然言語処理とコンピュータビジョンの交差点に関心のある研究者、実践者、学生にとって非常に価値がある。
関連論文リスト
- A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey [46.617998833238126]
大規模言語モデル(LLM)とコンピュータビジョン(CV)システムは、自然言語理解と視覚処理の進歩を促進する。
これらの技術の収束がマルチモーダルAIの台頭を触媒し、テキスト、ビジョン、オーディオ、ビデオモダリティにまたがるよりリッチでクロスモーダルな理解を可能にした。
マルチモーダル大規模言語モデル(MLLM)は、画像テキスト生成、視覚的質問応答、相互モーダル検索といったタスクにおいて印象的な機能を示す強力なフレームワークとして登場した。
これらの進歩にもかかわらず、MLLMの複雑さと規模は解釈可能性と説明可能性において大きな課題をもたらし、確立に不可欠である。
論文 参考訳(メタデータ) (2024-12-03T02:54:31Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。