論文の概要: Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2412.02104v1
- Date: Tue, 03 Dec 2024 02:54:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:53.182451
- Title: Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey
- Title(参考訳): 説明可能かつ解釈可能な多モーダル大言語モデル:包括的調査
- Authors: Yunkai Dang, Kaichen Huang, Jiahao Huo, Yibo Yan, Sirui Huang, Dongrui Liu, Mengxi Gao, Jie Zhang, Chen Qian, Kun Wang, Yong Liu, Jing Shao, Hui Xiong, Xuming Hu,
- Abstract要約: 大規模言語モデル(LLM)とコンピュータビジョン(CV)システムは、自然言語理解と視覚処理の進歩を促進する。
これらの技術の収束がマルチモーダルAIの台頭を触媒し、テキスト、ビジョン、オーディオ、ビデオモダリティにまたがるよりリッチでクロスモーダルな理解を可能にした。
マルチモーダル大規模言語モデル(MLLM)は、画像テキスト生成、視覚的質問応答、相互モーダル検索といったタスクにおいて印象的な機能を示す強力なフレームワークとして登場した。
これらの進歩にもかかわらず、MLLMの複雑さと規模は解釈可能性と説明可能性において大きな課題をもたらし、確立に不可欠である。
- 参考スコア(独自算出の注目度): 46.617998833238126
- License:
- Abstract: The rapid development of Artificial Intelligence (AI) has revolutionized numerous fields, with large language models (LLMs) and computer vision (CV) systems driving advancements in natural language understanding and visual processing, respectively. The convergence of these technologies has catalyzed the rise of multimodal AI, enabling richer, cross-modal understanding that spans text, vision, audio, and video modalities. Multimodal large language models (MLLMs), in particular, have emerged as a powerful framework, demonstrating impressive capabilities in tasks like image-text generation, visual question answering, and cross-modal retrieval. Despite these advancements, the complexity and scale of MLLMs introduce significant challenges in interpretability and explainability, essential for establishing transparency, trustworthiness, and reliability in high-stakes applications. This paper provides a comprehensive survey on the interpretability and explainability of MLLMs, proposing a novel framework that categorizes existing research across three perspectives: (I) Data, (II) Model, (III) Training \& Inference. We systematically analyze interpretability from token-level to embedding-level representations, assess approaches related to both architecture analysis and design, and explore training and inference strategies that enhance transparency. By comparing various methodologies, we identify their strengths and limitations and propose future research directions to address unresolved challenges in multimodal explainability. This survey offers a foundational resource for advancing interpretability and transparency in MLLMs, guiding researchers and practitioners toward developing more accountable and robust multimodal AI systems.
- Abstract(参考訳): 人工知能(AI)の急速な発展は、大きな言語モデル(LLM)とコンピュータビジョン(CV)システムがそれぞれ自然言語理解と視覚処理の進歩を推進し、多くの分野に革命をもたらした。
これらの技術の収束がマルチモーダルAIの台頭を触媒し、テキスト、ビジョン、オーディオ、ビデオモダリティにまたがるよりリッチでクロスモーダルな理解を可能にした。
特にMLLM(Multimodal large language model)は強力なフレームワークとして登場し、画像テキスト生成、視覚的質問応答、クロスモーダル検索といったタスクにおいて印象的な能力を発揮している。
これらの進歩にもかかわらず、MLLMの複雑さと規模は、透明性、信頼性、信頼性の確立に不可欠な、解釈可能性と説明可能性において重大な課題をもたらす。
本稿では,MLLMの解釈可能性と説明可能性に関する包括的調査を行い,(I)データ,(II)モデル,(III)トレーニング \&推論という3つの視点にまたがる既存研究を分類する新しいフレームワークを提案する。
トークンレベルでの解釈可能性から埋め込みレベルの表現までを体系的に分析し、アーキテクチャ分析と設計の両方に関するアプローチを評価し、透明性を高めるためのトレーニングと推論戦略を探求する。
様々な手法を比較することにより,それらの強みと限界を識別し,マルチモーダルな説明可能性において未解決の課題に対処するための今後の研究方向を提案する。
この調査はMLLMの解釈可能性と透明性を向上するための基盤となるリソースを提供し、研究者や実践者がより説明責任と堅牢なマルチモーダルAIシステムの開発を指導する。
関連論文リスト
- A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
大きな言語モデル(LLM)は、さらなる推論によって拡張された能力と信頼性を示す。
LLM推論の改善へのさまざまな取り組みにもかかわらず、高品質な長鎖推論データと最適化されたトレーニングパイプラインは、まだビジョン言語タスクでは不十分である。
本稿では,1)複雑なマルチモーダルタスクに対する長大かつ堅牢な推論データを生成するための初期の取り組みであるInsight-Vと,2)MLLMの推論能力を高めるための効果的なトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:55Z) - A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
MLLM(Large Language Model)は、テキスト、画像、ビデオ、オーディオを統合し、モーダルな理解と生成のためのAIシステムを実現する。
Bookは、スケーラビリティ、堅牢性、およびクロスモーダル学習における重要な課題に対処しながら、MLLM実装の顕著な点について検討している。
倫理的考察、責任あるAI開発、そして今後の方向性に関する議論をまとめると、この権威あるリソースは理論的な枠組みと実践的な洞察の両方を提供する。
論文 参考訳(メタデータ) (2024-11-09T20:56:23Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
この包括的調査は、HSモデレーションの最近の歩みを掘り下げている。
大型言語モデル(LLM)と大規模マルチモーダルモデル(LMM)の急成長する役割を強調した。
研究における既存のギャップを、特に表現不足言語や文化の文脈で特定する。
論文 参考訳(メタデータ) (2024-01-30T03:51:44Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - A Review on Explainability in Multimodal Deep Neural Nets [2.3204178451683264]
マルチモーダルAI技術は、いくつかのアプリケーションドメインで大きな成功を収めている。
その優れた性能にもかかわらず、深層ニューラルネットワークの複雑で不透明でブラックボックスな性質は、社会的受容と使用性を制限する。
本稿では,マルチモーダル深層ニューラルネットワークにおける説明可能性に関する包括的調査と解説を行うため,本論文を概説する。
論文 参考訳(メタデータ) (2021-05-17T14:17:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。