Metric Learning for Tag Recommendation: Tackling Data Sparsity and Cold Start Issues
- URL: http://arxiv.org/abs/2411.06374v1
- Date: Sun, 10 Nov 2024 06:46:44 GMT
- Title: Metric Learning for Tag Recommendation: Tackling Data Sparsity and Cold Start Issues
- Authors: Yuanshuai Luo, Rui Wang, Yaxin Liang, Ankai Liang, Wenyi Liu,
- Abstract summary: This paper proposes a new label recommendation algorithm based on metric learning.
It aims to overcome the challenges of traditional recommendation systems by learning effective distance or similarity metrics.
It performs particularly well in the accuracy of the first few recommended items.
- Score: 4.315795907799471
- License:
- Abstract: With the rapid growth of digital information, personalized recommendation systems have become an indispensable part of Internet services, especially in the fields of e-commerce, social media, and online entertainment. However, traditional collaborative filtering and content-based recommendation methods have limitations in dealing with data sparsity and cold start problems, especially in the face of largescale heterogeneous data, which makes it difficult to meet user expectations. This paper proposes a new label recommendation algorithm based on metric learning, which aims to overcome the challenges of traditional recommendation systems by learning effective distance or similarity metrics to capture the subtle differences between user preferences and item features. Experimental results show that the algorithm outperforms baseline methods including local response metric learning (LRML), collaborative metric learning (CML), and adaptive tensor factorization (ATF) based on adversarial learning on multiple evaluation metrics. In particular, it performs particularly well in the accuracy of the first few recommended items, while maintaining high robustness and maintaining high recommendation accuracy.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Online and Offline Evaluations of Collaborative Filtering and Content Based Recommender Systems [0.0]
This study provides a comparative analysis of a large-scale recommender system operating in Iran.
The system employs user-based and item-based recommendations using content-based, collaborative filtering, trend-based methods, and hybrid approaches.
Our methods of evaluation include manual evaluation, offline tests including accuracy and ranking metrics like hit-rate@k and nDCG, and online tests consisting of click-through rate (CTR)
arXiv Detail & Related papers (2024-11-02T20:05:31Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Data Imputation using Large Language Model to Accelerate Recommendation System [3.853804391135035]
We propose a novel approach that fine-tune Large Language Model (LLM) and use it impute missing data for recommendation systems.
LLM which is trained on vast amounts of text, is able to understand complex relationship among data and intelligently fill in missing information.
This enriched data is then used by the recommendation system to generate more accurate and personalized suggestions.
arXiv Detail & Related papers (2024-07-14T04:53:36Z) - Semantic-Enhanced Relational Metric Learning for Recommender Systems [27.330164862413184]
Recently, metric learning methods have been received great attention in recommendation community, which is inspired by the translation mechanism in knowledge graph.
We propose a joint Semantic-Enhanced Metric Learning framework to tackle the problem in recommender systems.
Specifically the semantic signal is first extracted from the target reviews containing abundant features and personalized user preferences.
A novel regression model is then designed via leveraging the extracted semantic signal to improve the discriminative ability of original relation-based training process.
arXiv Detail & Related papers (2024-06-07T11:54:50Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - A Review of Meta-level Learning in the Context of Multi-component,
Multi-level Evolving Prediction Systems [6.810856082577402]
The exponential growth of volume, variety and velocity of data is raising the need for investigations of automated or semi-automated ways to extract useful patterns from the data.
It requires deep expert knowledge and extensive computational resources to find the most appropriate mapping of learning methods for a given problem.
There is a need for an intelligent recommendation engine that can advise what is the best learning algorithm for a dataset.
arXiv Detail & Related papers (2020-07-17T14:14:37Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
We propose a novel recommendation method based on Matrix Factorization and graph analysis methods.
In addition, we leverage deep Autoencoders to initialize users and items latent factors, and deep embedding method gathers users' latent factors from the user trust graph.
arXiv Detail & Related papers (2020-04-17T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.