論文の概要: A Hybrid Approach for COVID-19 Detection: Combining Wasserstein GAN with Transfer Learning
- arxiv url: http://arxiv.org/abs/2411.06397v1
- Date: Sun, 10 Nov 2024 09:09:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:07.101241
- Title: A Hybrid Approach for COVID-19 Detection: Combining Wasserstein GAN with Transfer Learning
- Title(参考訳): 新型ウイルス検出のためのハイブリッドアプローチ:ワッサースタインGANとトランスファーラーニングを組み合わせて
- Authors: Sumera Rounaq, Shahid Munir Shah, Mahmoud Aljawarneh, Sarah Khan, Ghulam Muhammad,
- Abstract要約: 我々は、後にディープラーニングモデルに入力された画像を合成して、COVID-19、ノーマル、ウイルス肺炎の画像の分類を行うGANベースのアプローチを提案する。
この拡張データセットを使用して、VGG-16、ResNet-50、GoogLeNet、MNASTの4つの提案されたディープラーニングモデルをトレーニングする。
VGG-16は4つの計画の中で99.17%の精度を達成した。
- 参考スコア(独自算出の注目度): 2.531557154897006
- License:
- Abstract: COVID-19 is extremely contagious and its rapid growth has drawn attention towards its early diagnosis. Early diagnosis of COVID-19 enables healthcare professionals and government authorities to break the chain of transition and flatten the epidemic curve. With the number of cases accelerating across the developed world, COVID-19 induced Viral Pneumonia cases is a big challenge. Overlapping of COVID-19 cases with Viral Pneumonia and other lung infections with limited dataset and long training hours is a serious problem to cater. Limited amount of data often results in over-fitting models and due to this reason, model does not predict generalized results. To fill this gap, we proposed GAN-based approach to synthesize images which later fed into the deep learning models to classify images of COVID-19, Normal, and Viral Pneumonia. Specifically, customized Wasserstein GAN is proposed to generate 19% more Chest X-ray images as compare to the real images. This expanded dataset is then used to train four proposed deep learning models: VGG-16, ResNet-50, GoogLeNet and MNAST. The result showed that expanded dataset utilized deep learning models to deliver high classification accuracies. In particular, VGG-16 achieved highest accuracy of 99.17% among all four proposed schemes. Rest of the models like ResNet-50, GoogLeNet and MNAST delivered 93.9%, 94.49% and 97.75% testing accuracies respectively. Later, the efficiency of these models is compared with the state of art models on the basis of accuracy. Further, our proposed models can be applied to address the issue of scant datasets for any problem of image analysis.
- Abstract(参考訳): 新型コロナウイルスは極めて感染性が高く、早期診断に注目が集まっている。
新型コロナウイルスの早期診断により、医療専門家や政府機関は、移行の連鎖を破り、流行曲線をフラットにすることが可能になる。
先進国で感染者が急増する中で、新型コロナウイルス(COVID-19)によるウイルス肺炎は大きな課題だ。
新型コロナウイルス(COVID-19)のウイルス性肺炎などの肺感染症が重なり、データセットが限られ、訓練時間が長くなることが深刻な問題となっている。
限られた量のデータはしばしば過度に適合するモデルとなり、そのため、モデルは一般化された結果を予測しない。
このギャップを埋めるために、私たちは、後に深層学習モデルに入力された画像を合成して、COVID-19、ノーマル、ウイルス肺炎の画像の分類を行うGANベースのアプローチを提案した。
具体的には、独自のWasserstein GANが提案され、実際の画像と比較して19%のChest X線画像を生成する。
この拡張データセットを使用して、VGG-16、ResNet-50、GoogLeNet、MNASTの4つの提案されたディープラーニングモデルをトレーニングする。
その結果,拡張データセットはディープラーニングモデルを用いて高い分類精度を実現することがわかった。
特にVGG-16は4つの計画の中で99.17%の精度を達成した。
ResNet-50、GoogLeNet、MNASTといった他のモデルはそれぞれ93.9%、94.49%、97.75%のテストアキュラシーを納入した。
後に、これらのモデルの効率を精度に基づいて、アートモデルの状態と比較する。
さらに、画像解析のあらゆる問題に対して、スキャンデータセットの問題に対処するために、提案したモデルを適用することができる。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19(コロナウイルス)は、重症急性呼吸器症候群ウイルス(SARS-CoV-2)によるパンデミックである。
2019年12月中旬、中国武漢の湖北省で初感染が確認された。
全世界で7550万件以上が確認され、167万件以上が死亡している。
論文 参考訳(メタデータ) (2022-01-24T21:12:25Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
深層学習アルゴリズムの統合による心電図(ECG)データの利用により、COVID-19を自動的に診断するための新しいアプローチが提案されている。
CNNモデルは、VGG16、VGG19、InceptionResnetv2、InceptionV3、Resnet50、Densenet201を含む提案されたフレームワークで利用されている。
この結果,VGG16モデルと比較すると,他のモデルに比べて比較的精度が低いことがわかった。
論文 参考訳(メタデータ) (2021-12-15T08:06:45Z) - COVID-19 Detection through Deep Feature Extraction [0.0]
本研究は,ネットワークのバックボーンとして機能するResNet50を,ヘッドモデルとしてロジスティック回帰と組み合わせた,深い特徴抽出手法を用いた新しいアプローチを提案する。
提案モデルでは、新型コロナウイルスおよび正常X線画像クラスにおいて、100%のクロスバリデーション精度を実現する。
論文 参考訳(メタデータ) (2021-11-21T08:32:08Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis [22.54540093657541]
コロナウイルス感染症2019(COVID-19)は、2019年12月の報告以来、世界中で急速に拡大している。
近年、ディープラーニングに基づくアプローチは、無数の画像認識タスクにおいて顕著なパフォーマンスを示している。
本報告では, 疑似病変の発生と回復に基づく自己指導型事前訓練法を提案する。
論文 参考訳(メタデータ) (2021-06-23T11:21:30Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
クラウドソースのオーディオサンプルからエンドツーエンドのディープラーニングを使用してCOVID-19を診断する最初の試みを実証します。
本研究では, 人工深層ニューラルネットワークを用いて, 人工呼吸器から新型コロナを診断する新しいモデル戦略を提案する。
論文 参考訳(メタデータ) (2021-01-07T01:13:00Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z) - CoroNet: A deep neural network for detection and diagnosis of COVID-19
from chest x-ray images [0.0]
CoroNetは、胸部X線画像からCOVID-19感染を自動的に検出するDeep Conceptional Neural Networkモデルである。
提案したモデルは全体の89.6%の精度を達成し、新型コロナウイルス患者の精度とリコール率は93%と98.2%である。
論文 参考訳(メタデータ) (2020-04-10T07:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。