論文の概要: SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains
- arxiv url: http://arxiv.org/abs/2411.06426v1
- Date: Sun, 10 Nov 2024 11:08:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:13:12.353194
- Title: SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains
- Title(参考訳): SequentialBreak: ジェイルブレイクをシークエンシャル・プリンプ・チェーンに埋め込むことで,大規模言語モデルの構築が可能
- Authors: Bijoy Ahmed Saiem, MD Sadik Hossain Shanto, Rakib Ahsan, Md Rafi ur Rashid,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の脆弱性を利用した新しいジェイルブレイク攻撃であるSequentialBreakを紹介する。
問題バンク,ダイアログ補完,ゲーム環境などの事例に限らず,有害なプロンプトをLCMを騙して有害な応答を発生させる良質なプロンプトに埋め込む,いくつかのシナリオについて論じる。
大規模な実験では、SequentialBreakは単一のクエリしか使用せず、攻撃成功率を大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As the integration of the Large Language Models (LLMs) into various applications increases, so does their susceptibility to misuse, raising significant security concerns. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks mainly rely on scenario camouflage, prompt obfuscation, prompt optimization, and prompt iterative optimization to conceal malicious prompts. In particular, sequential prompt chains in a single query can lead LLMs to focus on certain prompts while ignoring others, facilitating context manipulation. This paper introduces SequentialBreak, a novel jailbreak attack that exploits this vulnerability. We discuss several scenarios, not limited to examples like Question Bank, Dialog Completion, and Game Environment, where the harmful prompt is embedded within benign ones that can fool LLMs into generating harmful responses. The distinct narrative structures of these scenarios show that SequentialBreak is flexible enough to adapt to various prompt formats beyond those discussed. Extensive experiments demonstrate that SequentialBreak uses only a single query to achieve a substantial gain of attack success rate over existing baselines against both open-source and closed-source models. Through our research, we highlight the urgent need for more robust and resilient safeguards to enhance LLM security and prevent potential misuse. All the result files and website associated with this research are available in this GitHub repository: https://anonymous.4open.science/r/JailBreakAttack-4F3B/.
- Abstract(参考訳): LLM(Large Language Models)が様々なアプリケーションに統合されるにつれて、その誤用への感受性も高まり、重大なセキュリティ上の懸念がもたらされる。
LLMのセキュリティ防衛を評価するために、数多くのジェイルブレイク攻撃が提案されている。
現在のjailbreak攻撃は主にシナリオカモフラージュ、迅速な難読化、迅速な最適化、悪意のあるプロンプトを隠蔽するための反復最適化に頼っている。
特に、単一のクエリにおけるシーケンシャルなプロンプトチェーンは、LLMを他のクエリを無視しながら特定のプロンプトに集中させ、コンテキスト操作を容易にする。
本稿では,この脆弱性を利用した新しいジェイルブレイク攻撃であるSequentialBreakを紹介する。
問題バンク,ダイアログ補完,ゲーム環境などの事例に限らず,有害なプロンプトをLCMを騙して有害な応答を発生させる良質なプロンプトに埋め込む,いくつかのシナリオについて論じる。
これらのシナリオの異なる物語構造は、SequentialBreakが議論されたもの以外の様々なプロンプトフォーマットに適応するのに十分な柔軟性を示している。
大規模な実験では、SequentialBreakは単一のクエリのみを使用して、既存のベースラインとクローズドソースモデルの両方に対する攻撃成功率を大幅に向上させる。
我々は,LSMのセキュリティを強化し,潜在的な誤用を防止するため,より堅牢でレジリエントな安全ガードの必要性を強調した。
この研究に関連するすべての結果ファイルとWebサイトは、GitHubリポジトリ(https://anonymous.4open.science/r/JailBreakAttack-4F3B/)で入手できる。
関連論文リスト
- EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - WordGame: Efficient & Effective LLM Jailbreak via Simultaneous Obfuscation in Query and Response [23.344727384686898]
我々は、現在の安全アライメントの共通パターンを分析し、クエリとレスポンスの同時難読化により、これらのパターンをジェイルブレイク攻撃に活用可能であることを示す。
具体的には、悪意のある単語をワードゲームに置き換えて、クエリの敵意を分解するWordGame攻撃を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:59:22Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers [74.7446827091938]
我々はjailbreak textbfAttack (DrAttack) のための自動プロンプト textbfDecomposition と textbfReconstruction フレームワークを導入する。
DrAttack には3つの重要な要素が含まれている: (a) プロンプトをサブプロンプトに分解する; (b) セマンティックに類似しているが無害な再組み立てデモで暗黙的にこれらのサブプロンプトを再構築する; (c) サブプロンプトのシンノニム検索する; サブプロンプトのシノニムを見つけることを目的としたサブプロンプトのシノニムを見つけること。
論文 参考訳(メタデータ) (2024-02-25T17:43:29Z) - LLMs Can Defend Themselves Against Jailbreaking in a Practical Manner: A
Vision Paper [16.078682415975337]
Jailbreakingは、既成の大規模言語モデル(LLM)に配置された安全アライメントをバイパスする、新たな敵攻撃である。
本稿では,SELFDEFENDと呼ばれる軽量で実用的な防御手法を提案する。
jailbreakプロンプトが最小限の遅延と、通常のユーザプロンプトが無視できる遅延で、既存のjailbreak攻撃を防げます。
論文 参考訳(メタデータ) (2024-02-24T05:34:43Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
本稿では,大規模言語モデルに対する新たなジェイルブレイク攻撃であるAutoDANを紹介する。
AutoDANは、慎重に設計された階層型遺伝的アルゴリズムによって、ステルスなジェイルブレイクプロンプトを自動的に生成できる。
論文 参考訳(メタデータ) (2023-10-03T19:44:37Z) - FuzzLLM: A Novel and Universal Fuzzing Framework for Proactively Discovering Jailbreak Vulnerabilities in Large Language Models [11.517609196300217]
FuzzLLMは,大規模言語モデル(LLM)におけるジェイルブレイク脆弱性を積極的にテストし,発見するために設計された,自動ファジリングフレームワークである。
テンプレートを使用してプロンプトの構造的整合性をキャプチャし、制約としてJailbreakクラスの重要な特徴を分離します。
異なるベースクラスを強力なコンボ攻撃に統合し、制約や禁止された質問の要素を変更することで、FazLLMは手作業の少ない効率的なテストを可能にする。
論文 参考訳(メタデータ) (2023-09-11T07:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。