論文の概要: Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2411.06447v1
- Date: Sun, 10 Nov 2024 12:40:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:05.375132
- Title: Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning
- Title(参考訳): 物理インフォームド・セルフ・スーパーバイザード・ラーニングを用いたマルチパラメータ分子MRI定量化
- Authors: Alex Finkelstein, Nikita Vladimirov, Moritz Zaiss, Or Perlman,
- Abstract要約: 生体物理モデルフィッティングは、生理的信号や画像から定量的パラメータを得る上で重要な役割を果たしている。
本稿では,常微分方程式(ODE)モデルを用いてパラメータ抽出逆問題の解法を提案する。
これは、数値ODEソルバをステップワイズ解析として機能させ、自動微分に基づく最適化と互換性を持たせることで実現される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n=4). The entire pipeline of the first whole brain quantification was completed in 18.3$\pm$8.3 minutes, which is an order-of-magnitude faster than comparable alternatives. Reusing the single-subject-trained network for inference in new subjects took 1.0$\pm$0.2 s, to provide results in agreement with literature values and scan-specific fit results (Pearson's r>0.98, p<0.0001).
- Abstract(参考訳): 生体物理モデルフィッティングは、生理的信号や画像から定量的パラメータを得る上で重要な役割を果たしている。
しかし、分子磁気共鳴イメージング(MRI)のモデル複雑さはしばしば過剰な計算時間に変換され、臨床利用は非現実的となる。
本稿では, 一般微分方程式(ODE)モデルによるパラメータ抽出逆問題の解法と, システムダイナミクスの実験的測定を併用した一般計算手法を提案する。
これは、数値ODEソルバをステップワイズ解析として機能させ、自動微分に基づく最適化と互換性を持たせることで実現される。
これにより、効率的な勾配モデルフィッティングが可能になり、単一のデータ観測から自己教師付き学習に基づくパラメータ定量化の新しいアプローチを提供する。
神経ネットワークを用いたトレインバイフィットパイプラインを用いて,ヒト脳における半固体磁化伝達(MT)と化学交換飽和輸送(CEST)アミドプロトン交換パラメータを定量化した。
最初の脳の量子化は18.3$\pm$8.3分で完了した。
Pearson's r>0.98, p<0.0001。
関連論文リスト
- Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity [1.290382979353427]
本研究では,新しい物理インフォームド機械学習手法,特にニューラル積分メッシュフリー(NIM)法を拡張し,有限ひずみ問題をモデル化することを目的とする。
固有の微分可能プログラミング機能のおかげで、NIMは変分形式のニュートン・ラフソン線形化の導出を回避できる。
NIMはひずみデータから超弾性材料の不均一力学特性を同定し, 非線形材料の逆モデリングにおけるその有効性を検証する。
論文 参考訳(メタデータ) (2024-07-15T19:15:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
薬物発見において、分子動力学シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合の正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
我々は、標準的な数値MDシミュレーションよりも2000$times$のスピードアップを達成し、安定性の指標の下では、他のMLアプローチよりも最大80%高い効率で、NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
定量的磁気共鳴イメージング(qMRI)は、生体物理パラメータの再現可能な測定を可能にする。
この課題は、取得した生データから所望の組織パラメーターマップを得るために、非線形で不適切な逆問題を解決することである。
我々は、信号、取得モデルに関する知識を統合した新しいqMRI再構成手法であるPINQIを提案し、単一エンドツーエンドのトレーニング可能なニューラルネットワークへの正規化を学習した。
論文 参考訳(メタデータ) (2023-06-19T15:37:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。