論文の概要: Offline Handwritten Signature Verification Using a Stream-Based Approach
- arxiv url: http://arxiv.org/abs/2411.06510v1
- Date: Sun, 10 Nov 2024 16:16:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:42.800068
- Title: Offline Handwritten Signature Verification Using a Stream-Based Approach
- Title(参考訳): ストリームベースアプローチを用いたオフライン手書き署名検証
- Authors: Kecia G. de Moura, Rafael M. O. Cruz, Robert Sabourin,
- Abstract要約: 署名検証システムは、真と偽の署名を区別する。
従来のHSV開発には静的なバッチ構成が含まれる。
本稿では,無限のシグネチャ列を受信し,時間とともに更新される適応システムを用いた新しいHSV手法を提案する。
- 参考スコア(独自算出の注目度): 7.18805896964466
- License:
- Abstract: Handwritten Signature Verification (HSV) systems distinguish between genuine and forged signatures. Traditional HSV development involves a static batch configuration, constraining the system's ability to model signatures to the limited data available. Signatures exhibit high intra-class variability and are sensitive to various factors, including time and external influences, imparting them a dynamic nature. This paper investigates the signature learning process within a data stream context. We propose a novel HSV approach with an adaptive system that receives an infinite sequence of signatures and is updated over time. Experiments were carried out on GPDS Synthetic, CEDAR, and MCYT datasets. Results demonstrate the superior performance of the proposed method compared to standard approaches that use a Support Vector Machine as a classifier. Implementation of the method is available at https://github.com/kdMoura/stream_hsv.
- Abstract(参考訳): 手書き署名検証(HSV)システムは、真偽と偽造署名を区別する。
従来のHSV開発には静的なバッチ構成が含まれており、システムのシグネチャを利用可能な限られたデータにモデル化する能力を制限している。
署名は高いクラス内変動を示し、時間や外部の影響など様々な要因に敏感であり、動的性質を与える。
本稿では,データストリームコンテキストにおけるシグネチャ学習プロセスについて検討する。
本稿では,無限のシグネチャ列を受信し,時間とともに更新される適応システムを用いた新しいHSV手法を提案する。
GPDS Synthetic, CEDAR, MCYTデータセットを用いて実験を行った。
その結果,Support Vector Machineを分類器として使用する標準的な手法と比較して,提案手法の優れた性能を示した。
メソッドの実装はhttps://github.com/kdMoura/stream_hsv.comで確認できる。
関連論文リスト
- Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder [6.128256936054622]
シグネチャ検証システムの主なタスクは、シグネチャ画像から特徴を抽出し、分類のための分類器を訓練することである。
署名検証モデルがトレーニングされている場合、熟練した偽造の例は、しばしば利用できない。
本稿では, 可変オートエンコーダ(VAE)を用いて, 署名画像から直接特徴を抽出する新しい署名検証手法を提案する。
論文 参考訳(メタデータ) (2024-09-29T19:54:47Z) - DiffusionPen: Towards Controlling the Style of Handwritten Text Generation [7.398476020996681]
DiffusionPen (DiffPen) は遅延拡散モデルに基づく5ショットスタイルの手書きテキスト生成手法である。
提案手法は,文字と文体の特徴の両面を抽出し,現実的な手書きサンプルを生成する。
提案手法は,既存の手法を質的かつ定量的に上回り,その付加データにより手書き文字認識(HTR)システムの性能を向上させることができる。
論文 参考訳(メタデータ) (2024-09-09T20:58:25Z) - SM-DTW: Stability Modulated Dynamic Time Warping for signature verification [4.299840769087444]
被験者の署名を複数実行した場合の実際の動作の違いを説明するために,安定性の概念を導入する。
我々は,シグネチャの最も安定な部分は,シグネチャ検証において,疑わしいシグネチャと参照シグネチャの類似性を評価する上で,最重要であると推測する。
安定領域を組み込むための安定性変調動的時間ワープアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-20T12:18:15Z) - Online Feature Updates Improve Online (Generalized) Label Shift Adaptation [51.328801874640675]
オンライン特徴更新を用いたオンラインラベルシフト適応法(OLS-OFU)は,自己教師付き学習を利用して特徴抽出プロセスを洗練する。
アルゴリズムを慎重に設計することで、OLS-OFUは改善された特徴を考慮しつつ、文献の結果に類似したオンライン後悔の収束を維持している。
論文 参考訳(メタデータ) (2024-02-05T22:03:25Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
クラス非依存動作予測のための半教師あり学習の可能性について検討する。
我々のフレームワークは一貫性に基づく自己学習パラダイムを採用しており、ラベルのないデータからモデルを学習することができる。
本手法は,弱さと完全教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2023-12-13T09:32:50Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Intrapersonal Parameter Optimization for Offline Handwritten Signature
Augmentation [17.11525750244627]
本稿では,最も一般的なライターの変動特性を自動的にモデル化する手法を提案する。
この方法は、画像と特徴空間のオフラインシグネチャを生成し、ASVSを訓練するために使われる。
我々は、よく知られた3つのオフライン署名データセットを用いて、ASVSの性能を生成されたサンプルで評価する。
論文 参考訳(メタデータ) (2020-10-13T19:54:02Z) - FCN+RL: A Fully Convolutional Network followed by Refinement Layers to
Offline Handwritten Signature Segmentation [3.3144312096837325]
そこで本研究では,手書き署名の画素の識別と抽出を行う手法を提案する。
この技術は、完全な畳み込みエンコーダ・デコーダネットワークと、予測された画像のアルファチャネルのための洗練されたレイヤのブロックを組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-28T18:47:10Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
ハードコントラストテキスト生成のための新しい挿入ベースアプローチであるPOINTERを提案する。
提案手法は,既存のトークン間で段階的に新しいトークンを並列に挿入することによって動作する。
結果として生じる粗大な階層構造は、生成プロセスを直感的で解釈可能である。
論文 参考訳(メタデータ) (2020-05-01T18:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。