論文の概要: Foundation Model for Composite Materials and Microstructural Analysis
- arxiv url: http://arxiv.org/abs/2411.06565v1
- Date: Sun, 10 Nov 2024 19:06:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:17.319041
- Title: Foundation Model for Composite Materials and Microstructural Analysis
- Title(参考訳): 複合材料の基礎モデルと組織解析
- Authors: Ting-Ju Wei, Chuin-Shan, Chen,
- Abstract要約: 複合材料に特化して設計された基礎モデルを提案する。
我々のモデルは、頑健な潜伏特性を学習するために、短繊維コンポジットのデータセット上で事前訓練されている。
転送学習中、MMAEはR2スコアが0.959に達し、限られたデータで訓練しても0.91を超えている均質化剛性を正確に予測する。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License:
- Abstract: The rapid advancement of machine learning has unlocked numerous opportunities for materials science, particularly in accelerating the design and analysis of materials. However, a significant challenge lies in the scarcity and high cost of obtaining high-quality materials datasets. In other fields, such as natural language processing, foundation models pre-trained on large datasets have achieved exceptional success in transfer learning, effectively leveraging latent features to achieve high performance on tasks with limited data. Despite this progress, the concept of foundation models remains underexplored in materials science. Here, we present a foundation model specifically designed for composite materials. Our model is pre-trained on a dataset of short-fiber composites to learn robust latent features. During transfer learning, the MMAE accurately predicts homogenized stiffness, with an R2 score reaching as high as 0.959 and consistently exceeding 0.91, even when trained on limited data. These findings validate the feasibility and effectiveness of foundation models in composite materials. We anticipate extending this approach to more complex three-dimensional composite materials, polycrystalline materials, and beyond. Moreover, this framework enables high-accuracy predictions even when experimental data are scarce, paving the way for more efficient and cost-effective materials design and analysis.
- Abstract(参考訳): 機械学習の急速な進歩は、材料科学、特に材料の設計と分析を加速する多くの機会を解放した。
しかし、重要な課題は、高品質な素材データセットを取得することの不足と高コストにある。
自然言語処理などの他の分野では、大規模なデータセットで事前訓練された基礎モデルは、トランスファーラーニングにおいて例外的な成功をおさめ、データ制限のあるタスクで高いパフォーマンスを達成するために、潜在機能を効果的に活用している。
この進歩にもかかわらず、基礎モデルの概念は材料科学では未解明のままである。
本稿では,複合材料に特化して設計された基礎モデルを提案する。
我々のモデルは、頑健な潜伏特性を学習するために、短繊維コンポジットのデータセット上で事前訓練されている。
転送学習中、MMAEはR2スコアが0.959に達し、限られたデータで訓練しても0.91を超えている均質化剛性を正確に予測する。
これらの結果から, 複合材料の基礎モデルの有効性と有効性が確認された。
このアプローチを,より複雑な3次元複合材料,多結晶材料などに拡張することを期待している。
さらに、実験データが少ない場合でも高精度な予測が可能であり、より効率的で費用対効果の高い材料設計・分析が可能となる。
関連論文リスト
- Out-of-distribution materials property prediction using adversarial learning based fine-tuning [0.0]
本稿では,特定のデータセットに適応させるための微調整アプローチをターゲットとした逆学習を提案する。
実験では,限られたサンプルを持つMLにおいて,CALアルゴリズムの成功を高い有効性で実証した。
論文 参考訳(メタデータ) (2024-08-17T21:22:21Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
室内シーンの外観分解のための生成モデルIntrinsic Image Diffusionを提案する。
1つの入力ビューから、アルベド、粗さ、および金属地図として表される複数の材料説明をサンプリングする。
提案手法は,PSNRで1.5dB$,アルベド予測で45%のFIDスコアを達成し,よりシャープで,より一貫性があり,より詳細な資料を生成する。
論文 参考訳(メタデータ) (2023-12-19T15:56:19Z) - Multimodal Learning for Materials [7.167520424757711]
材料の基礎モデルの自己教師型マルチモーダルトレーニングを可能にするマルチモーダル・ラーニング・フォー・マテリアル(MultiMat)を紹介した。
複数の軸上のMaterial Projectデータベースからのデータを用いてフレームワークの可能性を示す。
論文 参考訳(メタデータ) (2023-11-30T18:35:29Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties [4.495968252019426]
本稿では,構成構造ビモーダル学習による材料科学におけるマルチモーダル機械学習の新しいアプローチを提案する。
提案するCOSNetは,不完全な構造情報を持つ実験材料特性の学習と予測を強化するために設計されている。
論文 参考訳(メタデータ) (2023-08-04T02:04:52Z) - A Comprehensive and Versatile Multimodal Deep Learning Approach for
Predicting Diverse Properties of Advanced Materials [0.9517427900627922]
10次元アクリルポリマー複合材料の物性を予測するための多モード深層学習フレームワークを提案する。
提案手法は, 合成条件114,210において, 10個の入力と8個の特性出力を持ち, 913,680個の特性データポイントの予測に成功している。
この研究は、様々な材料に関する将来の研究と、より洗練されたモデルの開発を推進し、全ての材料の全ての特性を予測するという究極の目標に近づいた。
論文 参考訳(メタデータ) (2023-03-29T02:42:17Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
この章では、先進的なデータ駆動手法を示し、先進的な複合材料をマルチスケールでモデリングするために開発・追加する能力について概説する。
代理モデル/エミュレータによって駆動される有限要素法(FEM)シミュレーションに基づく複合構造物のマルチスケールモデリング手法を提案する。
論文 参考訳(メタデータ) (2022-10-13T16:40:11Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。