論文の概要: Foundation Model for Composite Materials and Microstructural Analysis
- arxiv url: http://arxiv.org/abs/2411.06565v2
- Date: Tue, 04 Feb 2025 14:57:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 21:44:25.205983
- Title: Foundation Model for Composite Materials and Microstructural Analysis
- Title(参考訳): 複合材料の基礎モデルと組織解析
- Authors: Ting-Ju Wei, Chuin-Shan Chen,
- Abstract要約: 複合材料に特化して設計された基礎モデルを提案する。
本研究は, 複合材料における基礎モデルの有効性と有効性について検証した。
このフレームワークは実験データが少ない場合でも高精度な予測を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of machine learning has unlocked numerous opportunities for materials science, particularly in accelerating the design and analysis of materials. However, a significant challenge lies in the scarcity and high cost of obtaining high-quality materials datasets. While foundation models pre-trained on large datasets have excelled in fields like natural language processing by leveraging latent features through transfer learning, their application in materials science remains limited. Here, we present a foundation model specifically designed for composite materials. Pre-trained on a dataset of short-fiber composites to learn robust latent features, the model accurately predicts homogenized stiffness during transfer learning, even with limited training data. Additionally, our model effectively predicts the material's nonlinear behavior by transferring these learned features to an Interaction-based Material Network, which is a constitutive surrogate model. These results demonstrate the potential of our foundation model to capture complex material behaviors. Our findings validate the feasibility and effectiveness of foundation models in composite materials. We anticipate extending this approach to more complex three-dimensional composite materials, polycrystalline materials, and beyond. Moreover, this framework enables high-accuracy predictions even when experimental data are scarce, paving the way for more efficient and cost-effective materials design and analysis.
- Abstract(参考訳): 機械学習の急速な進歩は、材料科学、特に材料の設計と分析を加速する多くの機会を解放した。
しかし、重要な課題は、高品質な素材データセットを取得することの不足と高コストにある。
大規模データセット上で事前訓練された基礎モデルは、伝達学習を通じて潜在特徴を活用することによって自然言語処理などの分野で優れているが、材料科学におけるそれらの応用は依然として限られている。
本稿では,複合材料に特化して設計された基礎モデルを提案する。
頑健な潜伏特徴を学習するために、短繊維複合体のデータセットに事前トレーニングされたモデルは、限られた訓練データであっても、転送学習中の均質化剛性を正確に予測する。
さらに,本モデルでは,これらの学習特徴を構成的サロゲートモデルであるインタラクションベース物質ネットワークに伝達することにより,その非線形挙動を効果的に予測する。
これらの結果は, 複雑な物質挙動を捉える基礎モデルの可能性を示すものである。
本研究は, 複合材料における基礎モデルの有効性と有効性について検証した。
このアプローチを,より複雑な3次元複合材料,多結晶材料などに拡張することを期待している。
さらに、実験データが少ない場合でも高精度な予測が可能であり、より効率的で費用対効果の高い材料設計・分析が可能となる。
関連論文リスト
- Spatial Understanding from Videos: Structured Prompts Meet Simulation Data [79.52833996220059]
本稿では,事前学習された視覚言語モデルにおける3次元空間推論を,アーキテクチャを変更することなく拡張するための統一的なフレームワークを提案する。
このフレームワークは、複雑なシーンと質問を解釈可能な推論ステップに分解する構造化プロンプト戦略であるSpatialMindと、多様な3Dシミュレーションシーンから構築されたスケーラブルな質問応答データセットであるScanForgeQAを組み合わせる。
論文 参考訳(メタデータ) (2025-06-04T07:36:33Z) - DIPO: Dual-State Images Controlled Articulated Object Generation Powered by Diverse Data [67.99373622902827]
DIPOは、一対のイメージから調音された3Dオブジェクトを制御可能な生成するためのフレームワークである。
本稿では,イメージペア間の関係を捉え,部分配置と関節パラメータを生成するデュアルイメージ拡散モデルを提案する。
複雑な3Dオブジェクトの大規模データセットであるPM-Xについて,レンダリング画像,URDFアノテーション,テキスト記述を伴って提案する。
論文 参考訳(メタデータ) (2025-05-26T18:55:14Z) - Statistical learning of structure-property relationships for transport in porous media, using hybrid AI modeling [0.0]
多孔質媒体の3次元微細構造は、有効拡散率や透過性を含む結果のマクロな性質に大きな影響を及ぼす。
多孔質媒体の性能を最適化するためには, 定量的構造・物性関係が重要である。
本論文は文献から得られた多孔質媒体の90,000個の仮想的な3次元微細構造を用いる。
このデータセットにハイブリッドAIフレームワークを適用することで,これらの知見を拡張した。
論文 参考訳(メタデータ) (2025-03-27T14:46:40Z) - 3D variational autoencoder for fingerprinting microstructure volume elements [0.5892638927736115]
微細構造ボリューム要素(VE)を符号化するための3次元変分オートエンコーダ(VAE)を提案する。
配向空間の結晶対称性は、前処理ステップとして結晶の基本領域にマッピングすることで説明される。
次に、VAEは、ランダムなテクスチャを持つ均質な多結晶構造を持つVEのトレーニングセットを符号化するために使用される。
このモデルは, トレーニング分布外のテクスチャ, 粒径, アスペクト比の微構造によく応用できることを示す。
論文 参考訳(メタデータ) (2025-03-21T11:17:10Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
知識駆動発見のために、実験データと事前のドメイン知識を統合することが不可欠である。
本稿では、高分解能走査透過電子顕微鏡(STEM)データと大規模言語モデル(LLM)からの洞察を組み合わせることで、このアプローチを実証する。
SmドープBiFeO3(SmBFO)におけるChatGPTをドメイン固有文献に微調整することにより、構造的、化学的、分極的自由度の間の因果関係をマッピングするDAG(Directed Acyclic Graphs)の隣接行列を構築する。
論文 参考訳(メタデータ) (2025-03-18T02:14:49Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Machine learning of microstructure--property relationships in materials leveraging microstructure representation from foundational vision transformers [0.0]
マイクロストラクチャーの機械学習-データからのプロパティ関係は、計算材料科学における新たなアプローチである。
本稿では,タスクに依存しないマイクロ構造特徴の抽出に,事前訓練された基礎視覚変換器を提案する。
論文 参考訳(メタデータ) (2025-01-28T17:06:47Z) - DARWIN 1.5: Large Language Models as Materials Science Adapted Learners [46.7259033847682]
DARWIN 1.5は,材料科学に適したオープンソースの大規模言語モデルである。
DARWINはタスク固有の記述子の必要性を排除し、材料特性の予測と発見に対する柔軟な統一的なアプローチを可能にする。
提案手法は,6Mの物質ドメイン論文と49,256の物質から得られた21の実験データセットを統合し,タスク間の知識伝達を可能にする。
論文 参考訳(メタデータ) (2024-12-16T16:51:27Z) - Out-of-distribution materials property prediction using adversarial learning based fine-tuning [0.0]
本稿では,特定のデータセットに適応させるための微調整アプローチをターゲットとした逆学習を提案する。
実験では,限られたサンプルを持つMLにおいて,CALアルゴリズムの成功を高い有効性で実証した。
論文 参考訳(メタデータ) (2024-08-17T21:22:21Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
2次元から3次元への次元展開は、現在の技術的観点から非常に難しい逆問題と見なされている。
U-netのマルチスケール特性とGANの生成能力を統合する新しい生成モデルが提案されている。
さらに、画像正規化損失とワッサーシュタイン距離損失を組み合わせることにより、モデルの精度をさらに向上する。
論文 参考訳(メタデータ) (2024-02-24T13:42:34Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
室内シーンの外観分解のための生成モデルIntrinsic Image Diffusionを提案する。
1つの入力ビューから、アルベド、粗さ、および金属地図として表される複数の材料説明をサンプリングする。
提案手法は,PSNRで1.5dB$,アルベド予測で45%のFIDスコアを達成し,よりシャープで,より一貫性があり,より詳細な資料を生成する。
論文 参考訳(メタデータ) (2023-12-19T15:56:19Z) - Multimodal Learning for Materials [7.167520424757711]
材料の基礎モデルの自己教師型マルチモーダルトレーニングを可能にするマルチモーダル・ラーニング・フォー・マテリアル(MultiMat)を紹介した。
複数の軸上のMaterial Projectデータベースからのデータを用いてフレームワークの可能性を示す。
論文 参考訳(メタデータ) (2023-11-30T18:35:29Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties [4.495968252019426]
本稿では,構成構造ビモーダル学習による材料科学におけるマルチモーダル機械学習の新しいアプローチを提案する。
提案するCOSNetは,不完全な構造情報を持つ実験材料特性の学習と予測を強化するために設計されている。
論文 参考訳(メタデータ) (2023-08-04T02:04:52Z) - A Comprehensive and Versatile Multimodal Deep Learning Approach for
Predicting Diverse Properties of Advanced Materials [0.9517427900627922]
10次元アクリルポリマー複合材料の物性を予測するための多モード深層学習フレームワークを提案する。
提案手法は, 合成条件114,210において, 10個の入力と8個の特性出力を持ち, 913,680個の特性データポイントの予測に成功している。
この研究は、様々な材料に関する将来の研究と、より洗練されたモデルの開発を推進し、全ての材料の全ての特性を予測するという究極の目標に近づいた。
論文 参考訳(メタデータ) (2023-03-29T02:42:17Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
この章では、先進的なデータ駆動手法を示し、先進的な複合材料をマルチスケールでモデリングするために開発・追加する能力について概説する。
代理モデル/エミュレータによって駆動される有限要素法(FEM)シミュレーションに基づく複合構造物のマルチスケールモデリング手法を提案する。
論文 参考訳(メタデータ) (2022-10-13T16:40:11Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
本研究は, 三次元マイクロ構造生成に適した生成対向ネットワークを提案する。
軽量アルゴリズムは、明示的な記述子を必要とせずに、単一のmicroCTスキャンから材料の基礎特性を学習することができる。
論文 参考訳(メタデータ) (2022-05-31T13:26:51Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Revealing the Invisible with Model and Data Shrinking for
Composite-database Micro-expression Recognition [49.463864096615254]
入力複雑性とモデル複雑性を含む学習複雑性の影響を分析する。
より浅層構造と低分解能入力データを探索する再帰畳み込みネットワーク(RCN)を提案する。
学習可能なパラメータを増やさなくてもRCNと統合できる3つのパラメータフリーモジュールを開発した。
論文 参考訳(メタデータ) (2020-06-17T06:19:24Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
本稿では、プロセスモデリング、材料均質化、機械学習に基づく統合データ駆動モデリングフレームワークを提案する。
我々は, 自動車, 航空宇宙, エレクトロニクス産業において重要な材料システムとして認識されてきた, 射出成形した短繊維強化複合材料に興味を持っている。
論文 参考訳(メタデータ) (2020-03-20T20:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。