論文の概要: HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization
- arxiv url: http://arxiv.org/abs/2411.06581v2
- Date: Fri, 16 May 2025 11:03:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:11.560529
- Title: HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization
- Title(参考訳): HAFLQ:不均一適応フェデレーションLRA微細調整LDMの量子化
- Authors: Yang Su, Na Yan, Yansha Deng, Mischa Dohler, Robert Schober,
- Abstract要約: LLM(Federated Fine-tuning of Pre-trained Large Language Models)は、さまざまなデータセットにまたがるタスク固有の適応を可能にすると同時に、プライバシの保護を可能にする。
本研究では, HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization) を提案する。
テキスト分類タスクの実験結果から,HAFLQはメモリ使用量を31%削減し,通信コストを49%削減し,精度を50%向上し,ベースライン法よりも高速な収束を実現している。
- 参考スコア(独自算出の注目度): 55.972018549438964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated fine-tuning of pre-trained Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving privacy. However, challenges such as high computational and memory demands, heterogeneous client resources, bandwidth constraints, and ineffective global aggregation hinder its efficiency. To address these issues, we propose HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization), a novel framework for efficient and scalable federated fine-tuning of LLMs in heterogeneous environments. To reduce memory and computation demands, we propose a salience-driven adaptive LLM quantization framework that evaluates the importance of transformer blocks using a salience metric and applies adaptive block-wise quantization accordingly. To handle heterogeneous computational capabilities, we propose an importance-based parameter truncation and freezing scheme. To address communication bottlenecks, we propose an importance-aware bandwidth-adaptive quantization method, which dynamically adjusts parameter precision based on importance and bandwidth constraints. To improve global model aggregation, we propose an adaptive rank-1 matrix-level aggregation strategy, which prevents information dilution and accelerates convergence by aggregating only updated rank-1 matrices from clients. Experimental results on the text classification task demonstrate that HAFLQ reduces memory usage by 31%, lowers communication cost by 49%, improves accuracy by 50%, and achieves faster convergence compared to the baseline method.
- Abstract(参考訳): LLM(Federated Fine-tuning of Pre-trained Large Language Models)は、さまざまなデータセットにまたがるタスク固有の適応を可能にすると同時に、プライバシの保護を可能にする。
しかし、高い計算とメモリ要求、異種クライアントリソース、帯域制限、非効率なグローバルアグリゲーションといった課題は効率を損なう。
これらの問題に対処するため, HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization) を提案する。
メモリと計算の要求を減らすため,サリエンスメトリックを用いてトランスフォーマーブロックの重要性を評価し,それに応じて適応ブロックワイド量子化を適用する,サリエンス駆動適応LDM量子化フレームワークを提案する。
不均一な計算能力を扱うために,重要度に基づくパラメータの切り抜きと凍結方式を提案する。
通信ボトルネックに対処するために,重要度と帯域幅制約に基づいてパラメータの精度を動的に調整する,重要度を考慮した帯域幅適応量子化手法を提案する。
グローバルモデルアグリゲーションを改善するために,更新されたランク1行列のみをクライアントから集約することで,情報の希釈を防止し,収束を加速する適応型ランク1行列レベルアグリゲーション戦略を提案する。
テキスト分類タスクの実験結果から,HAFLQはメモリ使用量を31%削減し,通信コストを49%削減し,精度を50%向上し,ベースライン法よりも高速な収束を実現している。
関連論文リスト
- PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning [54.99373314906667]
ポイントクラウドのための自己教師付き表現学習は、様々なタスクで事前訓練されたモデルパフォーマンスを改善する効果を実証した。
事前訓練されたモデルは複雑さが増すにつれて、下流のアプリケーションに完全に微調整を施すには、かなりの計算資源とストレージ資源が必要である。
そこで我々は,低ランク適応(LoRA)とマルチスケールトークン選択を併用した簡易かつ効果的なPointLoRAを提案する。
論文 参考訳(メタデータ) (2025-04-22T16:41:21Z) - Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation [47.82423317739088]
本稿では, パーソナライズされたモデルパラメータアグリゲーションを用いた三要素化低ランク適応手法である通信効率のフェデレーションLoRA適応(CE-LoRA)を提案する。
各種LLMおよびVLM微調整タスクの実験により、CE-LoRAは通信オーバーヘッドを著しく低減するだけでなく、独立で同一の分散データ条件下での性能も向上することが示された。
論文 参考訳(メタデータ) (2025-03-31T09:18:42Z) - FedRand: Enhancing Privacy in Federated Learning with Randomized LoRA Subparameter Updates [58.18162789618869]
フェデレートラーニング(FL)は、モデルを分散的にトレーニングするための広く使われているフレームワークである。
我々はFedRandフレームワークを提案し、クライアントパラメータの完全な集合を開示するのを避ける。
我々はFedRandがMIAに対するロバスト性を改善することを、関連するベースラインと比較して実証的に検証する。
論文 参考訳(メタデータ) (2025-03-10T11:55:50Z) - Decentralized Low-Rank Fine-Tuning of Large Language Models [14.75695352321115]
我々は,Low-Rank Adaptation (LoRA)に基づく大規模言語モデル(LLM)のための分散微調整アルゴリズムであるDec-LoRAを提案する。
BERT と LLaMA の実験により,Dec-LoRA は様々な条件下で集中型 LoRA に匹敵する性能を示した。
これらの結果は、分散環境におけるスケーラブルな微調整のためのDec-LoRAの可能性を強調している。
論文 参考訳(メタデータ) (2025-01-26T01:56:25Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
ファンデーションモデル(FM)は、タスク固有の微調整によって、多様なタスクにまたがる強力なパフォーマンスを実現する。
低ランク適応 (LoRA) のようなローランク適応 (LoRA) 手法は、少ないパラメータをチューニングするための低ランク行列を導入することで、このコストを削減する。
LoRA-FAIRは計算と通信の効率を維持し、最先端の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2024-11-22T14:19:01Z) - IterIS: Iterative Inference-Solving Alignment for LoRA Merging [14.263218227928729]
低ランク適応(LoRA)は、特定の下流タスクのために様々な領域にまたがる大きなモデルを微調整するために広く使われている。
LoRAマージは、データのプライバシを維持しながら複数のLoRAを統一アダプタに結合することで、効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-21T19:04:02Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) は基礎モデルの効率的な微調整技術として人気がある。
凍結重量行列に残留誤差項を追加するFederated Exact LoRA(FedEx-LoRA)を提案する。
提案手法は,LoRAの効率を保ちながら,計算と通信のオーバーヘッドを最小限に抑えた正確な更新を実現する。
論文 参考訳(メタデータ) (2024-10-12T08:22:44Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
ヘテロジニアスLoRAアダプタ上でのファインチューニングを可能にするFLORAと呼ばれる新しい手法を提案する。
我々のアプローチはノイズフリーであり、ヘテロジニアスなLoRAアダプタをシームレスにサポートしています。
論文 参考訳(メタデータ) (2024-09-09T18:21:23Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Towards Federated Low-Rank Adaptation of Language Models with Rank Heterogeneity [12.515874333424929]
クライアント間の不均一なランクが不安定なパフォーマンスにつながることを観察する。
この不安定性は従来のゼロ・パディング・アグリゲーション・ストラテジーに起因している。
高品質なデータを持つクライアントからの貴重な情報をよりよく保持するレプリケーションベースのパディング戦略を提案する。
論文 参考訳(メタデータ) (2024-06-25T11:49:33Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
半同期クラウドモデルアグリゲーションの下で非直交多重アクセス(NOMA)を実現するHFLシステムを提案する。
提案手法は,HFLの性能改善と総コスト削減に関するベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-03T13:34:44Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。