論文の概要: AFLoRA: Adaptive Federated Fine-Tuning of Large Language Models with Resource-Aware Low-Rank Adaption
- arxiv url: http://arxiv.org/abs/2505.24773v1
- Date: Fri, 30 May 2025 16:35:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.073988
- Title: AFLoRA: Adaptive Federated Fine-Tuning of Large Language Models with Resource-Aware Low-Rank Adaption
- Title(参考訳): AFLoRA:リソースを考慮した低ランク適応型大規模言語モデルの適応的フェデレーション調整
- Authors: Yajie Zhou, Xiaoyi Pang, Zhibo Wang,
- Abstract要約: フェデレートされた微調整は、分散データを使用して下流タスクにファンデーションモデルを適用するための有望なアプローチとして現れている。
大規模言語モデルのための適応的で軽量なファインチューニングフレームワークであるAFLoRAを提案する。
- 参考スコア(独自算出の注目度): 3.805501490912696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated fine-tuning has emerged as a promising approach to adapt foundation models to downstream tasks using decentralized data. However, real-world deployment remains challenging due to the high computational and communication demands of fine-tuning Large Language Models (LLMs) on clients with data and system resources that are heterogeneous and constrained. In such settings, the global model's performance is often bottlenecked by the weakest clients and further degraded by the non-IID nature of local data. Although existing methods leverage parameter-efficient techniques such as Low-Rank Adaptation (LoRA) to reduce communication and computation overhead, they often fail to simultaneously ensure accurate aggregation of low-rank updates and maintain low system costs, thereby hindering overall performance. To address these challenges, we propose AFLoRA, an adaptive and lightweight federated fine-tuning framework for LLMs. AFLoRA decouples shared and client-specific updates to reduce overhead and improve aggregation accuracy, incorporates diagonal matrix-based rank pruning to better utilize local resources, and employs rank-aware aggregation with public data refinement to strengthen generalization under data heterogeneity. Extensive experiments demonstrate that AFLoRA outperforms state-of-the-art methods in both accuracy and efficiency, providing a practical solution for efficient LLM adaptation in heterogeneous environments in the real world.
- Abstract(参考訳): フェデレートされた微調整は、分散データを使用して下流タスクにファンデーションモデルを適用するための有望なアプローチとして現れている。
しかし、非均一で制約のあるデータとシステムリソースを持つクライアント上での微調整大型言語モデル(LLM)の高い計算と通信要求のため、現実世界の展開は依然として困難である。
このような設定では、グローバルモデルの性能は、しばしば最も弱いクライアントによってボトルネックになり、ローカルデータの非IID特性によってさらに劣化する。
既存の手法では、ローランク適応(LoRA)のようなパラメータ効率のよい手法を用いて通信と計算のオーバーヘッドを削減するが、ローランク更新の正確な集計を同時に保証し、システムコストを低く抑え、全体的な性能を損なうことがしばしばある。
これらの課題に対処するために,LLMの適応的で軽量なファインチューニングフレームワークであるAFLoRAを提案する。
AFLoRAは、オーバヘッドの削減とアグリゲーションの精度向上のために、共有とクライアント固有の更新を分離し、ローカルリソースをより活用するために対角行列ベースのランクプルーニングを導入し、データヘテロジニティの下での一般化を強化するために、パブリックデータリファインメントとランクアウェアアグリゲーションを採用した。
AFLoRAは精度と効率の両方で最先端の手法より優れており、実世界の異種環境における効率的なLLM適応のための実用的なソリューションを提供する。
関連論文リスト
- Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation [47.82423317739088]
本稿では, パーソナライズされたモデルパラメータアグリゲーションを用いた三要素化低ランク適応手法である通信効率のフェデレーションLoRA適応(CE-LoRA)を提案する。
各種LLMおよびVLM微調整タスクの実験により、CE-LoRAは通信オーバーヘッドを著しく低減するだけでなく、独立で同一の分散データ条件下での性能も向上することが示された。
論文 参考訳(メタデータ) (2025-03-31T09:18:42Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
ユーザの行動、好み、デバイス特性の相違から生じるデータの異質性は、連合学習にとって重要な課題である。
本稿では,学習過程におけるクライアントベクトルに基づくアダプティブ重み付けを適応的に調整する手法であるAdaptive Weight Aggregation (FedAWA)を提案する。
論文 参考訳(メタデータ) (2025-03-20T04:49:40Z) - Decentralized Low-Rank Fine-Tuning of Large Language Models [14.75695352321115]
我々は,Low-Rank Adaptation (LoRA)に基づく大規模言語モデル(LLM)のための分散微調整アルゴリズムであるDec-LoRAを提案する。
BERT と LLaMA の実験により,Dec-LoRA は様々な条件下で集中型 LoRA に匹敵する性能を示した。
これらの結果は、分散環境におけるスケーラブルな微調整のためのDec-LoRAの可能性を強調している。
論文 参考訳(メタデータ) (2025-01-26T01:56:25Z) - HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization [55.972018549438964]
LLM(Federated Fine-tuning of Pre-trained Large Language Models)は、さまざまなデータセットにまたがるタスク固有の適応を可能にすると同時に、プライバシの保護を可能にする。
本研究では, HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization) を提案する。
テキスト分類タスクの実験結果から,HAFLQはメモリ使用量を31%削減し,通信コストを49%削減し,精度を50%向上し,ベースライン法よりも高速な収束を実現している。
論文 参考訳(メタデータ) (2024-11-10T19:59:54Z) - Towards Robust and Efficient Federated Low-Rank Adaptation with Heterogeneous Clients [6.570712059945705]
低ランク適応(LoRA)は解法として提案されているが、連合学習におけるその応用は集約の不一致によって複雑である。
この不一致に対処する既存の手法は、不均一なデータ設定で低いランクでの性能劣化に悩まされることが多い。
LoRA-A2 (Low Rank Adaptation with Alternating freeze and Adaptive rank selection) を導入し、低ランクと高データの異種性に挑戦する際のロバスト性を示す。
論文 参考訳(メタデータ) (2024-10-30T08:48:21Z) - Towards Federated Low-Rank Adaptation of Language Models with Rank Heterogeneity [12.515874333424929]
クライアント間の不均一なランクが不安定なパフォーマンスにつながることを観察する。
この不安定性は従来のゼロ・パディング・アグリゲーション・ストラテジーに起因している。
高品質なデータを持つクライアントからの貴重な情報をよりよく保持するレプリケーションベースのパディング戦略を提案する。
論文 参考訳(メタデータ) (2024-06-25T11:49:33Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
フェデレートラーニング(FL)では、グローバルサーバの協調の下で、ローカルクライアントのクラスタがチェアリングされる。
クライアントは自身のオプティマに過度に適合する傾向にあり、グローバルな目標から非常に逸脱する。
tt Family FedSMOOは、グローバルな目的に対する局所的な最適性を保証するために動的正規化器を採用する。
理論解析により, tt Family FedSMOO は, 低境界一般化による高速$mathcalO (1/T)$収束率を達成することが示された。
論文 参考訳(メタデータ) (2023-05-19T10:47:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。