Few measurement shots challenge generalization in learning to classify entanglement
- URL: http://arxiv.org/abs/2411.06600v1
- Date: Sun, 10 Nov 2024 21:20:21 GMT
- Title: Few measurement shots challenge generalization in learning to classify entanglement
- Authors: Leonardo Banchi, Jason Pereira, Marco Zamboni,
- Abstract summary: This paper focuses on hybrid quantum learning techniques where classical machine-learning methods are paired with quantum algorithms.
We show that, in some settings, the uncertainty coming from a few measurement shots can be the dominant source of errors.
We introduce an estimator based on classical shadows that performs better in the big data, few copy regime.
- Score: 0.0
- License:
- Abstract: The ability to extract general laws from a few known examples depends on the complexity of the problem and on the amount of training data. In the quantum setting, the learner's generalization performance is further challenged by the destructive nature of quantum measurements that, together with the no-cloning theorem, limits the amount of information that can be extracted from each training sample. In this paper we focus on hybrid quantum learning techniques where classical machine-learning methods are paired with quantum algorithms and show that, in some settings, the uncertainty coming from a few measurement shots can be the dominant source of errors. We identify an instance of this possibly general issue by focusing on the classification of maximally entangled vs. separable states, showing that this toy problem becomes challenging for learners unaware of entanglement theory. Finally, we introduce an estimator based on classical shadows that performs better in the big data, few copy regime. Our results show that the naive application of classical machine-learning methods to the quantum setting is problematic, and that a better theoretical foundation of quantum learning is required.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Information-theoretic generalization bounds for learning from quantum data [5.0739329301140845]
We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data.
We prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities.
Our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.
arXiv Detail & Related papers (2023-11-09T17:21:38Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Statistical Complexity of Quantum Learning [32.48879688084909]
This article reviews the complexity of quantum learning using information-theoretic techniques.
We focus on data complexity, copy complexity, and model complexity.
We highlight the differences between quantum and classical learning by addressing both supervised and unsupervised learning.
arXiv Detail & Related papers (2023-09-20T20:04:05Z) - Exponential separations between classical and quantum learners [2.209921757303168]
We discuss how subtle differences in definitions can result in significantly different requirements and tasks for the learner to meet and solve.
We present two new learning separations where the classical difficulty primarily lies in identifying the function generating the data.
arXiv Detail & Related papers (2023-06-28T08:55:56Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Learning quantum processes without input control [2.6089354079273512]
We introduce a general statistical learning theory for processes that take as input a classical random variable and output a quantum state.
This framework is applicable to the study of astronomical phenomena, disordered systems and biological processes not controlled by the observer.
arXiv Detail & Related papers (2022-11-09T16:34:46Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - On establishing learning separations between classical and quantum
machine learning with classical data [0.0]
We discuss the challenges of finding learning problems that quantum learning algorithms can learn much faster than any classical learning algorithm.
We study existing learning problems with a provable quantum speedup to distill sets of more general and sufficient conditions.
These checklists are intended to streamline one's approach to proving quantum speedups for learning problems, or to elucidate bottlenecks.
arXiv Detail & Related papers (2022-08-12T16:00:30Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.