HomoMatcher: Dense Feature Matching Results with Semi-Dense Efficiency by Homography Estimation
- URL: http://arxiv.org/abs/2411.06700v1
- Date: Mon, 11 Nov 2024 04:05:12 GMT
- Title: HomoMatcher: Dense Feature Matching Results with Semi-Dense Efficiency by Homography Estimation
- Authors: Xiaolong Wang, Lei Yu, Yingying Zhang, Jiangwei Lao, Lixiang Ru, Liheng Zhong, Jingdong Chen, Yu Zhang, Ming Yang,
- Abstract summary: Feature matching between image pairs is a fundamental problem in computer vision that drives many applications, such as SLAM.
This paper concentrates on enhancing the fine-matching module in the semi-dense matching framework.
We employ a lightweight and efficient homography estimation network to generate the perspective mapping between patches obtained from coarse matching.
- Score: 39.48940223810725
- License:
- Abstract: Feature matching between image pairs is a fundamental problem in computer vision that drives many applications, such as SLAM. Recently, semi-dense matching approaches have achieved substantial performance enhancements and established a widely-accepted coarse-to-fine paradigm. However, the majority of existing methods focus on improving coarse feature representation rather than the fine-matching module. Prior fine-matching techniques, which rely on point-to-patch matching probability expectation or direct regression, often lack precision and do not guarantee the continuity of feature points across sequential images. To address this limitation, this paper concentrates on enhancing the fine-matching module in the semi-dense matching framework. We employ a lightweight and efficient homography estimation network to generate the perspective mapping between patches obtained from coarse matching. This patch-to-patch approach achieves the overall alignment of two patches, resulting in a higher sub-pixel accuracy by incorporating additional constraints. By leveraging the homography estimation between patches, we can achieve a dense matching result with low computational cost. Extensive experiments demonstrate that our method achieves higher accuracy compared to previous semi-dense matchers. Meanwhile, our dense matching results exhibit similar end-point-error accuracy compared to previous dense matchers while maintaining semi-dense efficiency.
Related papers
- Geometry-aware Feature Matching for Large-Scale Structure from Motion [10.645087195983201]
We introduce geometry cues in addition to color cues to fill gaps when there is less overlap in large-scale scenarios.
Our approach ensures that the denser correspondences from detector-free methods are geometrically consistent and more accurate.
It outperforms state-of-the-art feature matching methods on benchmark datasets.
arXiv Detail & Related papers (2024-09-03T21:41:35Z) - An Effective Image Copy-Move Forgery Detection Using Entropy Information [5.882089693239905]
This paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector.
An overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints.
arXiv Detail & Related papers (2023-12-19T02:09:38Z) - Improving Transformer-based Image Matching by Cascaded Capturing
Spatially Informative Keypoints [44.90917854990362]
We propose a transformer-based cascade matching model -- Cascade feature Matching TRansformer (CasMTR)
We use a simple yet effective Non-Maximum Suppression (NMS) post-process to filter keypoints through the confidence map.
CasMTR achieves state-of-the-art performance in indoor and outdoor pose estimation as well as visual localization.
arXiv Detail & Related papers (2023-03-06T04:32:34Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
We propose an efficient structure named Correspondence Efficient Transformer (ECO-TR) by finding correspondences in a coarse-to-fine manner.
To achieve this, multiple transformer blocks are stage-wisely connected to gradually refine the predicted coordinates.
Experiments on various sparse and dense matching tasks demonstrate the superiority of our method in both efficiency and effectiveness against existing state-of-the-arts.
arXiv Detail & Related papers (2022-09-25T13:05:33Z) - Adaptive Assignment for Geometry Aware Local Feature Matching [22.818457285745733]
detector-free feature matching approaches are currently attracting great attention thanks to their excellent performance.
We introduce AdaMatcher, which accomplishes the feature correlation and co-visible area estimation through an elaborate feature interaction module.
AdaMatcher then performs adaptive assignment on patch-level matching while estimating the scales between images, and finally refines the co-visible matches through scale alignment and sub-pixel regression module.
arXiv Detail & Related papers (2022-07-18T08:22:18Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - DFM: A Performance Baseline for Deep Feature Matching [10.014010310188821]
The proposed method uses pre-trained VGG architecture as a feature extractor and does not require any additional training specific to improve matching.
Our algorithm achieves 0.57 and 0.80 overall scores in terms of Mean Matching Accuracy (MMA) for 1 pixel and 2 pixels thresholds respectively on Hpatches dataset.
arXiv Detail & Related papers (2021-06-14T22:55:06Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.