An Effective Image Copy-Move Forgery Detection Using Entropy Information
- URL: http://arxiv.org/abs/2312.11793v2
- Date: Tue, 30 Apr 2024 04:38:53 GMT
- Title: An Effective Image Copy-Move Forgery Detection Using Entropy Information
- Authors: Li Jiang, Zhaowei Lu,
- Abstract summary: This paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector.
An overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints.
- Score: 5.882089693239905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image forensics has become increasingly crucial in our daily lives. Among various types of forgeries, copy-move forgery detection has received considerable attention within the academic community. Keypoint-based algorithms, particularly those based on Scale Invariant Feature Transform, have achieved promising outcomes. However, most of keypoint detection algorithms failed to generate sufficient matches when tampered patches were occurred in smooth areas, leading to insufficient matches. Therefore, this paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector, which make the pre-processing more suitable for solving the above problems. Furthermore, an overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints. Experimental results demonstrate that our algorithm achieves a good balance between performance and time efficiency.
Related papers
- HomoMatcher: Dense Feature Matching Results with Semi-Dense Efficiency by Homography Estimation [39.48940223810725]
Feature matching between image pairs is a fundamental problem in computer vision that drives many applications, such as SLAM.
This paper concentrates on enhancing the fine-matching module in the semi-dense matching framework.
We employ a lightweight and efficient homography estimation network to generate the perspective mapping between patches obtained from coarse matching.
arXiv Detail & Related papers (2024-11-11T04:05:12Z) - A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
We show how to analyze the behavior of distributed gradient descent algorithms in the presence of adversarial corruptions.
We show how to use ideas from (lazy) mirror descent to design a corruption-tolerant distributed optimization algorithm.
Experiments based on linear regression, support vector classification, and softmax classification on the MNIST dataset corroborate our theoretical findings.
arXiv Detail & Related papers (2024-07-19T08:29:12Z) - Image Copy-Move Forgery Detection and Localization Scheme: How to Avoid Missed Detection and False Alarm [10.135979083516174]
Image copy-move is an operation that replaces one part of the image with another part of the same image, which can be used for illegal purposes.
Recent studies have shown that keypoint-based algorithms achieved excellent and robust localization performance.
However, when the input image is low-resolution, most existing keypoint-based algorithms are difficult to generate sufficient keypoints.
arXiv Detail & Related papers (2024-06-05T13:50:29Z) - Deep Hashing via Householder Quantization [3.106177436374861]
Hashing is at the heart of large-scale image similarity search.
A common solution is to employ loss functions that combine a similarity learning term and a quantization penalty term.
We propose an alternative quantization strategy that decomposes the learning problem in two stages.
arXiv Detail & Related papers (2023-11-07T18:47:28Z) - Improving Transformer-based Image Matching by Cascaded Capturing
Spatially Informative Keypoints [44.90917854990362]
We propose a transformer-based cascade matching model -- Cascade feature Matching TRansformer (CasMTR)
We use a simple yet effective Non-Maximum Suppression (NMS) post-process to filter keypoints through the confidence map.
CasMTR achieves state-of-the-art performance in indoor and outdoor pose estimation as well as visual localization.
arXiv Detail & Related papers (2023-03-06T04:32:34Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
We propose an efficient structure named Correspondence Efficient Transformer (ECO-TR) by finding correspondences in a coarse-to-fine manner.
To achieve this, multiple transformer blocks are stage-wisely connected to gradually refine the predicted coordinates.
Experiments on various sparse and dense matching tasks demonstrate the superiority of our method in both efficiency and effectiveness against existing state-of-the-arts.
arXiv Detail & Related papers (2022-09-25T13:05:33Z) - Invariant Causal Mechanisms through Distribution Matching [86.07327840293894]
In this work we provide a causal perspective and a new algorithm for learning invariant representations.
Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization.
arXiv Detail & Related papers (2022-06-23T12:06:54Z) - FFD: Fast Feature Detector [22.51804239092462]
We show that robust and accurate keypoints exist in the specific scale-space domain.
It is proved that setting the scale-space pyramid's smoothness ratio and blurring to 2 and 0.627, respectively, facilitates the detection of reliable keypoints.
arXiv Detail & Related papers (2020-12-01T21:56:35Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.