Nonreciprocal interaction and entanglement between two superconducting qubits
- URL: http://arxiv.org/abs/2411.06775v1
- Date: Mon, 11 Nov 2024 08:05:47 GMT
- Title: Nonreciprocal interaction and entanglement between two superconducting qubits
- Authors: Yu-Meng Ren, Xue-Feng Pan, Xiao-Yu Yao, Xiao-Wen Huo, Jun-Cong Zheng, Xin-Lei Hei, Yi-Fan Qiao, Peng-Bo Li,
- Abstract summary: Nonreciprocal interaction between two spatially separated subsystems plays a crucial role in signal processing and quantum networks.
We propose an efficient scheme to achieve nonreciprocal interaction and entanglement between two qubits by combining coherent and dissipative couplings.
Applying a drive field to one of the qubits can stabilize the system into a nonreciprocal steady-state entangled state.
- Score: 3.515074934699951
- License:
- Abstract: Nonreciprocal interaction between two spatially separated subsystems plays a crucial role in signal processing and quantum networks. Here, we propose an efficient scheme to achieve nonreciprocal interaction and entanglement between two qubits by combining coherent and dissipative couplings in a superconducting platform, where two coherently coupled transmon qubits simultaneously interact with a transmission line waveguide. The coherent interaction between the transmon qubits can be achieved via capacitive coupling or via an intermediary cavity mode, while the dissipative interaction is induced by the transmission line via reservoir engineering. With high tunability of superconducting qubits, their positions along the transmission line can be adjusted to tune the dissipative coupling, enabling to tailor reciprocal and nonreciprocal interactions between the qubits. A fully nonreciprocal interaction can be achieved when the separation between the two qubits is $(4n+3)\lambda_{0} /4$, where $n$ is an integer and $\lambda_{0}$ is the photon wavelength. This nonreciprocal interaction enables the generation of nonreciprocal entanglement between the two transmon qubits. Furthermore, applying a drive field to one of the qubit can stabilize the system into a nonreciprocal steady-state entangled state. Remarkably, the nonreciprocal interaction in this work does not rely on the presence of nonlinearity or complex configurations, which has more potential applications in designing nonreciprocal quantum devices, processing quantum information, and building quantum networks.
Related papers
- Suppressing chaos with mixed superconducting qubit devices [0.0]
We study the crossover between localized and delocalized (chaotic) regimes in linear arrays of superconducting qubits.
In systems with alternating anharmonicity, the localized regime is found to be more resilient to the increase in qubit-qubit coupling strength.
This result supports designing devices that incorporate different qubit types to achieve higher performances.
arXiv Detail & Related papers (2024-10-24T08:46:43Z) - Floquet Engineering of Anisotropic Transverse Interactions in Superconducting Qubits [16.41991651645662]
We show the simultaneous realization of pairing (XX-YY) and hopping (XX+YY) interactions between transmon qubits by Floquet engineering.
The coherent superposition of these interactions enables independent control over the XX and YY terms, yielding anisotropic transverse interactions.
arXiv Detail & Related papers (2024-10-14T07:04:06Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Chiral coupling between a ferromagnetic magnon and a superconducting
qubit [0.0]
Chiral coupling at the single-quantum level promises to be a remarkable potential for quantum information processing.
We propose to achieve a chiral interaction between a magnon mode in a ferromagnetic sphere and a superconducting qubit mediated by a one-dimensional coupled-cavity array.
arXiv Detail & Related papers (2022-11-10T01:34:10Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Mediated interactions beyond the nearest neighbor in an array of
superconducting qubits [0.0]
We consider mediated interactions in an array of floating transmons, where each qubit capacitor consists of two superconducting pads galvanically isolated from ground.
extraneous modes can generate coupling between the qubit modes that extends beyond the nearest neighbor.
arXiv Detail & Related papers (2021-10-04T20:14:39Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.