Floquet Engineering of Anisotropic Transverse Interactions in Superconducting Qubits
- URL: http://arxiv.org/abs/2410.10208v1
- Date: Mon, 14 Oct 2024 07:04:06 GMT
- Title: Floquet Engineering of Anisotropic Transverse Interactions in Superconducting Qubits
- Authors: Yongqi Liang, Wenhui Huang, Libo Zhang, Ziyu Tao, Kai Tang, Ji Chu, Jiawei Qiu, Xuandong Sun, Yuxuan Zhou, Jiawei Zhang, Jiajian Zhang, Weijie Guo, Yang Liu, Yuanzhen Chen, Song Liu, Youpeng Zhong, Jingjing Niu, Dapeng Yu,
- Abstract summary: We show the simultaneous realization of pairing (XX-YY) and hopping (XX+YY) interactions between transmon qubits by Floquet engineering.
The coherent superposition of these interactions enables independent control over the XX and YY terms, yielding anisotropic transverse interactions.
- Score: 16.41991651645662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting transmon qubits have established as a leading candidate for quantum computation, as well as a flexible platform for exploring exotic quantum phases and dynamics. However, physical coupling naturally yields isotropic transverse interactions between qubits, restricting their access to diverse quantum phases that require spatially dependent interactions. Here, we demonstrate the simultaneous realization of both pairing (XX-YY) and hopping (XX+YY) interactions between transmon qubits by Floquet engineering. The coherent superposition of these interactions enables independent control over the XX and YY terms, yielding anisotropic transverse interactions. By aligning the transverse interactions along a 1D chain of six qubits, as calibrated via Aharonov-Bohm interference in synthetic space, we synthesize a transverse field Ising chain model and explore its dynamical phase transition under varying external field. The scalable synthesis of anisotropic transverse interactions paves the way for the implementation of more complex physical systems requiring spatially dependent interactions, enriching the toolbox for engineering quantum phases with superconducting qubits.
Related papers
- Nonreciprocal interaction and entanglement between two superconducting qubits [3.515074934699951]
Nonreciprocal interaction between two spatially separated subsystems plays a crucial role in signal processing and quantum networks.
We propose an efficient scheme to achieve nonreciprocal interaction and entanglement between two qubits by combining coherent and dissipative couplings.
Applying a drive field to one of the qubits can stabilize the system into a nonreciprocal steady-state entangled state.
arXiv Detail & Related papers (2024-11-11T08:05:47Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Interaction-induced topological pumping in a solid-state quantum system [18.7657779101508]
Inter-particle interaction can profoundly alter the band structure of quantum many-body systems.
Here we demonstrate interaction-induced topological pumping in a solid-state quantum system comprising an array of 36 superconducting qubits.
arXiv Detail & Related papers (2023-03-08T13:57:13Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Fully tunable longitudinal spin-photon interactions in Si and Ge quantum
dots [0.0]
We show that large longitudinal interactions emerge naturally in state-of-the-art hole spin qubits.
We propose realistic protocols to measure these interactions and to implement fast and high-fidelity two-qubit entangling gates.
arXiv Detail & Related papers (2022-03-31T16:36:53Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.