論文の概要: Structuring the Processing Frameworks for Data Stream Evaluation and Application
- arxiv url: http://arxiv.org/abs/2411.06799v1
- Date: Mon, 11 Nov 2024 08:53:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:30.027819
- Title: Structuring the Processing Frameworks for Data Stream Evaluation and Application
- Title(参考訳): データストリーム評価と応用のための処理フレームワークの構築
- Authors: Joanna Komorniczak, Paweł Ksieniewicz, Paweł Zyblewski,
- Abstract要約: この研究は、現実世界のアプリケーションに類似した環境におけるソリューションの評価に使用できるデータストリーム処理のフレームワークの問題に対処する。
構造化フレームワークの定義は、遅延と制限されたラベルアクセスの制約を考慮して、データストリームの分類方法を確実に評価する必要があることに由来する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The following work addresses the problem of frameworks for data stream processing that can be used to evaluate the solutions in an environment that resembles real-world applications. The definition of structured frameworks stems from a need to reliably evaluate the data stream classification methods, considering the constraints of delayed and limited label access. The current experimental evaluation often boundlessly exploits the assumption of their complete and immediate access to monitor the recognition quality and to adapt the methods to the changing concepts. The problem is leveraged by reviewing currently described methods and techniques for data stream processing and verifying their outcomes in simulated environment. The effect of the work is a proposed taxonomy of data stream processing frameworks, showing the linkage between drift detection and classification methods considering a natural phenomenon of label delay.
- Abstract(参考訳): 以下の作業は、実世界のアプリケーションに似た環境におけるソリューション評価に使用できるデータストリーム処理のフレームワークの問題に対処する。
構造化フレームワークの定義は、遅延と制限されたラベルアクセスの制約を考慮して、データストリームの分類方法を確実に評価する必要があることに由来する。
現在の実験的な評価は、しばしば、認識品質を監視し、その変化する概念にメソッドを適用するために、その完全かつ即時アクセスの仮定を無作為に活用する。
この問題は、現在記述されているデータストリーム処理の方法やテクニックをレビューし、シミュレーション環境で結果を検証することで活用される。
本研究の効果はデータストリーム処理フレームワークの分類法として提案され,ラベル遅延の自然現象を考慮したドリフト検出と分類手法の関連性を示す。
関連論文リスト
- Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
継続的なテスト時間適応は、訓練済みのソースモデルを適用して、教師なしのターゲットドメインを継続的に変更する。
我々は、オンライン環境、教師なしの自然、エラー蓄積や破滅的な忘れのリスクなど、このタスクの課題を分析する。
教師なしシングルパスデータストリームから重要サンプルを高い確実性で識別・集約する不確実性を考慮したバッファリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T15:48:40Z) - A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data [40.00357483768265]
本研究では,Nighbor-Searching Discrepancyに基づく新しい概念ドリフト検出手法を提案する。
提案手法は,仮想ドリフトを無視しながら,実概念ドリフトを高精度に検出することができる。
また、ある階級の侵略や撤退を特定することで、分類境界の変化の方向を示すこともできる。
論文 参考訳(メタデータ) (2024-05-23T04:03:36Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - A Monitoring and Discovery Approach for Declarative Processes Based on
Streams [0.0]
本稿では,イベントストリームから宣言的過程を動的条件応答(DCR)グラフとして抽出する発見アルゴリズムを提案する。
ストリームはプロセスの時間的表現を生成するために監視され、後に宣言的モデルを生成するために処理される。
論文 参考訳(メタデータ) (2022-08-10T14:25:35Z) - Stream-based active learning with linear models [0.7734726150561089]
生産において、製品情報を取得するためにランダム検査を行う代わりに、ラベルなしデータの情報内容を評価することによりラベルを収集する。
本稿では,ストリームベースのシナリオを学習者に順次提供するための新たな戦略を提案する。
未ラベルデータポイントの通知性にしきい値を設定することにより、意思決定プロセスの反復的な側面に取り組む。
論文 参考訳(メタデータ) (2022-07-20T13:15:23Z) - Active Weighted Aging Ensemble for Drifted Data Stream Classification [2.277447144331876]
概念ドリフトは分類モデルの性能を不安定化し、その品質を著しく低下させる。
提案手法は実データストリームと実データストリームの両方を用いて計算機実験により評価されている。
その結果,提案アルゴリズムは最先端手法よりも高品質であることが確認された。
論文 参考訳(メタデータ) (2021-12-19T13:52:53Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
本論文はシステム文献レビュー(SLR)を通して,本分野における既存手法について考察する。
SLRは今後の研究の課題や分野に関する洞察を提供し、規範的なプロセス監視手法の有用性と適用性を高めることができる。
論文 参考訳(メタデータ) (2021-12-03T08:06:24Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
本稿では,雑音遷移行列を推定し,同時に分類器を学習する理論的基礎付け手法を提案する。
提案手法の有効性を,ベンチマークおよび実世界のデータセットを用いた実験により示す。
論文 参考訳(メタデータ) (2021-02-04T05:09:18Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z) - Similarity-based data mining for online domain adaptation of a sonar ATR
system [2.064612766965483]
本稿では,新しいデータ選択手法を用いて,自動目標認識アルゴリズムのオンライン微調整を提案する。
提案したデータマイニング手法は視覚的類似性に依存し,従来のハードマイニング手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-16T09:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。