GraphRPM: Risk Pattern Mining on Industrial Large Attributed Graphs
- URL: http://arxiv.org/abs/2411.06878v1
- Date: Mon, 11 Nov 2024 11:20:30 GMT
- Title: GraphRPM: Risk Pattern Mining on Industrial Large Attributed Graphs
- Authors: Sheng Tian, Xintan Zeng, Yifei Hu, Baokun Wang, Yongchao Liu, Yue Jin, Changhua Meng, Chuntao Hong, Tianyi Zhang, Weiqiang Wang,
- Abstract summary: We introduce GraphRPM, an industry-purpose parallel and distributed risk pattern mining framework on large attributed graphs.
The framework incorporates a novel edge-involved graph isomorphism network alongside optimized operations for parallel graph computation.
- Score: 33.131074213867464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based patterns are extensively employed and favored by practitioners within industrial companies due to their capacity to represent the behavioral attributes and topological relationships among users, thereby offering enhanced interpretability in comparison to black-box models commonly utilized for classification and recognition tasks. For instance, within the scenario of transaction risk management, a graph pattern that is characteristic of a particular risk category can be readily employed to discern transactions fraught with risk, delineate networks of criminal activity, or investigate the methodologies employed by fraudsters. Nonetheless, graph data in industrial settings is often characterized by its massive scale, encompassing data sets with millions or even billions of nodes, making the manual extraction of graph patterns not only labor-intensive but also necessitating specialized knowledge in particular domains of risk. Moreover, existing methodologies for mining graph patterns encounter significant obstacles when tasked with analyzing large-scale attributed graphs. In this work, we introduce GraphRPM, an industry-purpose parallel and distributed risk pattern mining framework on large attributed graphs. The framework incorporates a novel edge-involved graph isomorphism network alongside optimized operations for parallel graph computation, which collectively contribute to a considerable reduction in computational complexity and resource expenditure. Moreover, the intelligent filtration of efficacious risky graph patterns is facilitated by the proposed evaluation metrics. Comprehensive experimental evaluations conducted on real-world datasets of varying sizes substantiate the capability of GraphRPM to adeptly address the challenges inherent in mining patterns from large-scale industrial attributed graphs, thereby underscoring its substantial value for industrial deployment.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - KnowGraph: Knowledge-Enabled Anomaly Detection via Logical Reasoning on Graph Data [13.510494408303536]
KnowGraph integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection.
Tests show KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings.
Results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.
arXiv Detail & Related papers (2024-10-10T21:53:33Z) - A Model-Agnostic Graph Neural Network for Integrating Local and Global Information [2.6164652182042505]
Graph Neural Networks (GNNs) have achieved promising performance in a variety of graph-focused tasks.
Existing GNNs suffer from two significant limitations: a lack of interpretability in their results due to their black-box nature, and an inability to learn representations of varying orders.
We propose a novel Model-agnostic Graph Neural Network (MaGNet) framework, which is able to effectively integrate information of various orders, extract knowledge from high-order neighbors, and provide meaningful and interpretable results by identifying influential compact graph structures.
arXiv Detail & Related papers (2023-09-23T19:07:03Z) - FairGen: Towards Fair Graph Generation [76.34239875010381]
We propose a fairness-aware graph generative model named FairGen.
Our model jointly trains a label-informed graph generation module and a fair representation learning module.
Experimental results on seven real-world data sets, including web-based graphs, demonstrate that FairGen obtains performance on par with state-of-the-art graph generative models.
arXiv Detail & Related papers (2023-03-30T23:30:42Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Understanding graph embedding methods and their applications [1.14219428942199]
Graph embedding techniques can be effective in converting high-dimensional sparse graphs into low-dimensional, dense and continuous vector spaces.
The generated nonlinear and highly informative graph embeddings in the latent space can be conveniently used to address different downstream graph analytics tasks.
arXiv Detail & Related papers (2020-12-15T00:30:22Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.