Subgradient Method using Quantum Annealing for Inequality-Constrained Binary Optimization Problems
- URL: http://arxiv.org/abs/2411.06901v1
- Date: Mon, 11 Nov 2024 11:59:50 GMT
- Title: Subgradient Method using Quantum Annealing for Inequality-Constrained Binary Optimization Problems
- Authors: Taisei Takabayashi, Takeru Goto, Masayuki Ohzeki,
- Abstract summary: We show that inequality constraints can be relaxed into a similar objective function through statistical mechanics.
We evaluate the performance of this method in a typical inequality-constrained optimization problem, the quadratic knapsack problem.
- Score: 0.4915744683251151
- License:
- Abstract: Quantum annealing is a generic solver for combinatorial optimization problems that utilizes quantum fluctuations. Recently, there has been extensive research applying quantum annealers, which are hardware implementations of quantum annealing. Since quantum annealers can only handle quadratic unconstrained binary optimization problems, to solve constrained combinatorial optimization problems using quantum annealers, the constraints must be incorporated into the objective function. One such technique is the Ohzeki method, which employs a Hubbard-Stratonovich transformation to relax equality constraints, and its effectiveness for large-scale problems has been demonstrated numerically. This study applies the Ohzeki method to combinatorial optimization problems with inequality constraints. We show that inequality constraints can be relaxed into a similar objective function through statistical mechanics calculations similar to those for equality constraints. In addition, we evaluate the performance of this method in a typical inequality-constrained combinatorial optimization problem, the quadratic knapsack problem.
Related papers
- Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance.
Quantum computing has been used to attempt to solve these problems using a range of algorithms.
This work presents a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach.
arXiv Detail & Related papers (2024-03-05T17:46:04Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - A Quantum Approach for Stochastic Constrained Binary Optimization [2.6803492658436032]
Quantum-based algorithms have been shown to generate high-quality solutions to hard problems.
This work puts forth quantum vectors to cope with binary quadratically constrained programs.
The method builds upon dual decomposition and entails solving a sequence of judiciously modified standard VQE tasks.
arXiv Detail & Related papers (2023-01-04T04:24:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
arXiv Detail & Related papers (2021-01-19T19:00:40Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.