論文の概要: Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Sensor Fusion
- arxiv url: http://arxiv.org/abs/2411.06917v2
- Date: Wed, 06 Aug 2025 13:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 15:43:07.605534
- Title: Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Sensor Fusion
- Title(参考訳): 空間時間センサフュージョンにおける非教師なし領域適応回帰
- Authors: Keivan Faghih Niresi, Ismail Nejjar, Olga Fink,
- Abstract要約: 環境およびバイオメディカル領域における低コストで分散センサーネットワークは、継続的な大規模健康モニタリングを可能にしている。
これらのシステムは、センサーのドリフト、ノイズ、キャリブレーションの不十分に起因する劣化したデータ品質に関する課題に直面していることが多い。
センサフュージョンとキャリブレーションの伝統的な機械学習手法は、広範な機能工学に依存している。
回帰タスクに適した新しいunsupervised domain adapt(UDA)手法を提案する。
- 参考スコア(独自算出の注目度): 6.963971634605796
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing deployment of low-cost, distributed sensor networks in environmental and biomedical domains has enabled continuous, large-scale health monitoring. However, these systems often face challenges related to degraded data quality caused by sensor drift, noise, and insufficient calibration -- factors that limit their reliability in real-world applications. Traditional machine learning methods for sensor fusion and calibration rely on extensive feature engineering and struggle to capture spatial-temporal dependencies or adapt to distribution shifts across varying deployment conditions. To address these challenges, we propose a novel unsupervised domain adaptation (UDA) method tailored for regression tasks. Our proposed method integrates effectively with Spatial-Temporal Graph Neural Networks and leverages the alignment of perturbed inverse Gram matrices between source and target domains, drawing inspiration from Tikhonov regularization. This approach enables scalable and efficient domain adaptation without requiring labeled data in the target domain. We validate our novel method on real-world datasets from two distinct applications: air quality monitoring and EEG signal reconstruction. Our method achieves state-of-the-art performance which paves the way for more robust and transferable sensor fusion models in both environmental and physiological contexts. Our code is available at https://github.com/EPFL-IMOS/TikUDA.
- Abstract(参考訳): 低コストで分散センサーネットワークの環境およびバイオメディカル領域への展開の増加により、継続的な大規模健康モニタリングが可能になった。
しかし、これらのシステムは、センサーのドリフト、ノイズ、キャリブレーションの不十分に起因する劣化したデータ品質に関する課題に直面することが多い。
センサフュージョンとキャリブレーションのための従来の機械学習手法は、広範な機能エンジニアリングと、空間的時間的依存関係のキャプチャや、さまざまなデプロイメント条件の分散シフトへの適応に苦労している。
これらの課題に対処するために、回帰タスクに適した新しい教師なしドメイン適応(UDA)手法を提案する。
提案手法は空間時間グラフニューラルネットワークと有効に統合し,ソース領域とターゲット領域間の摂動逆グラム行列のアライメントを利用して,Tikhonov正則化からインスピレーションを得る。
このアプローチは、ターゲットドメインにラベル付きデータを必要とせずに、スケーラブルで効率的なドメイン適応を可能にする。
我々は,大気質モニタリングと脳波信号再構成という2つの異なる応用から,実世界のデータセットに対する新しい手法を検証する。
本手法は, 環境・生理の両面において, より堅牢で伝達可能なセンサ融合モデルを実現するための最先端性能を実現する。
私たちのコードはhttps://github.com/EPFL-IMOS/TikUDA.comで利用可能です。
関連論文リスト
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
我々はオブジェクトポイントクラウド上でSim2Real UDAのための新しいTopology-Aware Modeling (TAM)フレームワークを紹介する。
提案手法は,低レベルの高周波3次元構造を特徴とするグローバル空間トポロジを利用して,領域間隙を緩和する。
本稿では,クロスドメイン・コントラスト学習と自己学習を組み合わせた高度な自己学習戦略を提案する。
論文 参考訳(メタデータ) (2025-06-26T11:53:59Z) - Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning [73.40364018029673]
連続的なテスト時間適応オブジェクト検出(CTTA-OD)は、源となる事前訓練された検出器を常に変化する環境にオンライン適応させることを目的としている。
私たちのモチベーションは、学習したすべての特徴が有益であるとは限らないという観察に起因しています。
FLOPの計算オーバヘッドを12%削減し,優れた適応性を実現する。
論文 参考訳(メタデータ) (2025-06-03T05:27:56Z) - Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
都市森林は、環境の質を高め、都市における生物多様性を支援する上で重要な役割を担っている。
複雑な地形と異なる衛星センサーやUAV飛行高度による画像解像度の変化により、正確に木を検知することは困難である。
低解像度空中画像の品質を高めるため,GANと拡散モデルとドメイン適応を統合した新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2025-05-21T03:57:10Z) - Efficient and Robust Multidimensional Attention in Remote Physiological Sensing through Target Signal Constrained Factorization [7.947387272047604]
マルチモーダルビデオ入力からの光胸腺造影(rRSP)信号と呼吸(rRSP)信号の同時推定を目的とした,効率的なデュアルブランチ3D-CNNアーキテクチャであるMMRPhysを提案する。
TSFMを用いたMMRPhysは、リアルタイムアプリケーションに適した最小の推論レイテンシを維持しつつ、RRSP推定のための領域シフトの一般化において最先端の手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-05-11T15:20:45Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
異常検出は産業アプリケーションの品質管理において重要な役割を担っている。
既存の方法は、一般化可能なモデルをトレーニングすることで、ドメインシフトに対処しようとする。
提案手法は,最先端の異常検出法や領域適応法と比較して,優れた結果を示す。
論文 参考訳(メタデータ) (2025-03-19T05:25:52Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
単一ドメインの一般化は、単一のソースからのデータを使用して、さまざまなシナリオで一貫したパフォーマンスでモデルをトレーニングすることを目的としている。
モデル一般化を改善するために合成データを活用した学習フレームワークDRSFを提案する。
論文 参考訳(メタデータ) (2025-03-17T18:08:03Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
複雑なシステムの信頼性と効率的な運用にはリアルタイム状態監視が不可欠である。
仮想センシングは、利用可能なセンサデータとシステム知識を活用することで制限に対処する。
異種時間グラフニューラルネットワーク(HTGNN)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-26T12:16:53Z) - DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
本研究では,3次元物体の検出と局所化を確保するために,新しい拡散型ボックス精細化手法を提案する。
提案手法は,様々なドメイン適応設定下で評価し,その結果,異なるデータセット間での大幅な改善が示された。
論文 参考訳(メタデータ) (2024-05-25T03:14:55Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
マスク付きモデルと自己教師型学習を用いたセンサ故障検出のための新しいフレームワークを提案する。
提案手法を,オフショアGE風力タービンのパブリックデータセットと実世界のデータセットの両方で検証する。
提案手法は,センサ計測の精度と信頼性をリアルタイムに向上する可能性がある。
論文 参考訳(メタデータ) (2024-03-24T13:44:57Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
本稿では,ネットワークのセンサ配置問題について検討する。
まず, 流れの保存仮定に基づいて問題を定式化し, 最適に固定されたセンサを配置することがNPハードであることを示す。
次に,大規模ネットワークにスケールするセンサ配置のための効率よく適応的なグリージーを提案する。
論文 参考訳(メタデータ) (2023-12-12T01:08:08Z) - Spatial-Temporal Graph Attention Fuser for Calibration in IoT Air
Pollution Monitoring Systems [8.997596859735516]
本稿では,センサアレイからのデータを融合させることによりキャリブレーションのプロセスを改善する新しい手法を提案する。
我々は,IoT大気汚染監視プラットフォームにおけるセンサの校正精度を大幅に向上させる手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-09-08T12:04:47Z) - Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces [3.729242965449096]
センサ配置問題は、相関現象を監視する際に発生する一般的な問題である。
本稿では,勾配降下法を用いて最適化可能な変分近似に基づくSP問題に対する新しい定式化を提案する。
論文 参考訳(メタデータ) (2023-02-28T19:10:12Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Sensor Control for Information Gain in Dynamic, Sparse and Partially
Observed Environments [1.5402666674186938]
本研究では,部分観測可能,動的,疎密なサンプル環境下での情報収集のための自律型センサ制御手法を提案する。
本研究は,(1)新しい情報獲得報酬を用いて,未開の非定常環境における探索を改善することで,DAN強化学習フレームワークを拡張した。
また、目的のRFスペクトル/フィールドからのサンプリングが限定された状況にまで拡張し、制限されたフィールドサンプリングから反復的に改善されたモデルを介してコントローラを微調整するオリジナルのRLアルゴリズムのモデルベースバージョンを提案する。
論文 参考訳(メタデータ) (2022-11-03T00:03:14Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
本稿では, 農作物に設置したセンサから, 7種類のセンサからのデータと, 振動センサを用いた先進的な製造試験からのデータを分析する。
これら2つのアプリケーション領域において、予測的障害分類がいかに達成され、予測的メンテナンスの道が開かれたかを示す。
論文 参考訳(メタデータ) (2021-02-11T02:37:27Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
オンライン学習に基づく温度・湿度・圧力センサの非校正検出装置を開発した。
このソリューションはニューラルネットワークをメインコンポーネントとして統合し、校正条件下でのセンサーの動作から学習する。
その結果, 提案手法は, 偏差値0.25度, 1% RH, 1.5Paの偏差をそれぞれ検出できることがわかった。
論文 参考訳(メタデータ) (2021-02-02T15:44:39Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
相関情報を利用するスケジューリング機構を提案する。
提案したメカニズムは、センサが更新を送信する頻度を決定することができる。
我々は,センサの寿命を大幅に延長できることを示した。
論文 参考訳(メタデータ) (2020-11-19T09:53:27Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。