論文の概要: More Expressive Attention with Negative Weights
- arxiv url: http://arxiv.org/abs/2411.07176v2
- Date: Thu, 14 Nov 2024 08:20:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 11:44:56.583992
- Title: More Expressive Attention with Negative Weights
- Title(参考訳): 負の重みを持つより表現力のある注意
- Authors: Ang Lv, Ruobing Xie, Shuaipeng Li, Jiayi Liao, Xingwu Sun, Zhanhui Kang, Di Wang, Rui Yan,
- Abstract要約: 本稿では,注意重みを否定的に表現力を高めるための新しい注意機構,Cog Attentionを提案する。
Cog Attentionはトークンの削除とコピー機能を静的なOV行列から動的QK内部積にシフトさせる。
コグ注意(Cog Attention)はモデルの表現的崩壊に対する堅牢性を改善する。
- 参考スコア(独自算出の注目度): 36.40344438470477
- License:
- Abstract: We propose a novel attention mechanism, named Cog Attention, that enables attention weights to be negative for enhanced expressiveness, which stems from two key factors: (1) Cog Attention can shift the token deletion and copying function from a static OV matrix to dynamic QK inner products, with the OV matrix now focusing more on refinement or modification. The attention head can simultaneously delete, copy, or retain tokens by assigning them negative, positive, or minimal attention weights, respectively. As a result, a single attention head becomes more flexible and expressive. (2) Cog Attention improves the model's robustness against representational collapse, which can occur when earlier tokens are over-squashed into later positions, leading to homogeneous representations. Negative weights reduce effective information paths from earlier to later tokens, helping to mitigate this issue. We develop Transformer-like models which use Cog Attention as attention modules, including decoder-only models for language modeling and U-ViT diffusion models for image generation. Experiments show that models using Cog Attention exhibit superior performance compared to those employing traditional softmax attention modules. Our approach suggests a promising research direction for rethinking and breaking the entrenched constraints of traditional softmax attention, such as the requirement for non-negative weights.
- Abstract(参考訳): そこで本研究では,(1)Cag Attentionはトークンの削除とコピー機能を静的なOVマトリクスから動的QK内積にシフトし,OVマトリクスは改良や修正に重点を置いている,という2つの重要な要因から,注目重みを負にすることができる新しいアテンションメカニズムを提案する。
注目ヘッドは、それぞれ負、正、最小の注意重みを割り当てることで、トークンを同時に削除、コピー、保持することができる。
その結果、単一の注目ヘッドはより柔軟で表現力のあるものとなる。
2) コグ注意(Cog Attention)は、表現的崩壊に対するモデルの堅牢性を改善する。
負の重みは、前から後までの効果的な情報経路を減らし、この問題を軽減するのに役立ちます。
我々は、言語モデリングのためのデコーダのみのモデルや画像生成のためのU-ViT拡散モデルを含む、Cag Attentionをアテンションモジュールとして使用するTransformerライクなモデルを開発した。
実験により,Cog Attentionを用いたモデルは,従来のソフトマックスアテンションモジュールを用いたモデルに比べて優れた性能を示した。
提案手法は,非負重みの要件など,従来のソフトマックス注意の制約を再考し,破る上で有望な研究方向を示すものである。
関連論文リスト
- FuXi-$α$: Scaling Recommendation Model with Feature Interaction Enhanced Transformer [81.12174905444229]
近年の進歩は、大規模レコメンデーションモデルに逐次レコメンデーションモデルを拡張することが効果的な戦略であることを示している。
これらの問題に対処するために、FuXi-$alpha$と呼ばれる新しいモデルを提案する。
我々のモデルは既存のモデルよりも優れており、モデルのサイズが大きくなるにつれてその性能は継続的に向上する。
論文 参考訳(メタデータ) (2025-02-05T09:46:54Z) - Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models [7.80071686970278]
従来のSoftmaxの注意は、推論トークンの長さが増加するにつれて、数値的な不安定さと性能の低下に悩まされる。
本稿では,Softmax演算を非線形変換と$l_1$-normに分解することで,これらの問題に対処する。
我々は,従来のSoftmaxのアテンションよりも優れた性能を持つ新しいアテンション機構を,様々な推論長さにわたって構築する。
論文 参考訳(メタデータ) (2025-01-23T07:21:08Z) - Text-Guided Attention is All You Need for Zero-Shot Robustness in Vision-Language Models [64.67721492968941]
ゼロショットロバストネス(TGA-ZSR)のためのテキストガイド型アテンションを提案する。
我々のゴールは、CLIPモデルの一般化を維持し、敵の堅牢性を高めることである。
本手法は,現在の最先端技術よりも9.58%の精度でゼロショット精度を向上する。
論文 参考訳(メタデータ) (2024-10-29T07:15:09Z) - A Primal-Dual Framework for Transformers and Neural Networks [52.814467832108875]
自己注意は、シーケンスモデリングタスクにおけるトランスフォーマーの顕著な成功の鍵である。
自己アテンションは、支持ベクトル回帰問題から導かれる支持ベクトル展開に対応することを示す。
Batch Normalized Attention (Attention-BN) と Scaled Head (Attention-SH) の2つの新しい注意点を提案する。
論文 参考訳(メタデータ) (2024-06-19T19:11:22Z) - FAST: Factorizable Attention for Speeding up Transformers [1.3637227185793512]
本稿では,スペーシフィケーションを伴わずに,注目行列の完全な表現を維持する線形スケールアテンション機構を提案する。
その結果、我々の注意機構は堅牢な性能を示し、自己注意が使用される多様なアプリケーションに対して大きな可能性を秘めていることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T18:59:39Z) - Revisiting Attention Weights as Explanations from an Information
Theoretic Perspective [4.499369811647602]
注意機構は、他のモデル要素と慎重に組み合わせた場合、説明をモデル化するためのショートカットとして機能する可能性があることを示す。
本研究により,注意機構は,他のモデル要素と慎重に組み合わせた場合,モデル説明のためのショートカットとして機能する可能性が示唆された。
論文 参考訳(メタデータ) (2022-10-31T12:53:20Z) - Causal Attention for Vision-Language Tasks [142.82608295995652]
新しい注意機構:Causal Attention (CATT)について紹介する。
CATTは、既存の注目に基づく視覚言語モデルにおける絶え間ない欠点を除去する。
特に,CATTは大規模プレトレーニングにおいて大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-03-05T06:38:25Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
トランスフォーマーベースのモデルは、その強力な能力のために自然言語処理(NLP)タスクに人気がある。
事前学習モデルの注意マップの可視化は,自己着脱機構を理解するための直接的な方法の一つである。
本研究では,sparsebert設計の指導にも適用可能な微分可能アテンションマスク(dam)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-25T14:13:44Z) - Gaussian Constrained Attention Network for Scene Text Recognition [16.485898019983797]
既存の注意機構は注意拡散の問題に直面しており、モデルが特定の特徴領域に焦点を絞らない可能性がある。
本稿では,新しいガウス制約リファインメントモジュールを組み込んだ2次元アテンションベース手法を提案する。
このように、注意重みはより集中し、注意に基づく認識ネットワークはより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-10-19T01:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。