Joint Age-State Belief is All You Need: Minimizing AoII via Pull-Based Remote Estimation
- URL: http://arxiv.org/abs/2411.07179v1
- Date: Mon, 11 Nov 2024 17:57:25 GMT
- Title: Joint Age-State Belief is All You Need: Minimizing AoII via Pull-Based Remote Estimation
- Authors: Ismail Cosandal, Sennur Ulukus, Nail Akar,
- Abstract summary: Age of incorrect information (AoII) is a recently proposed freshness and mismatch metric.
Keeping track of AoII requires the knowledge of both the source and estimation processes.
- Score: 30.838857981082967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Age of incorrect information (AoII) is a recently proposed freshness and mismatch metric that penalizes an incorrect estimation along with its duration. Therefore, keeping track of AoII requires the knowledge of both the source and estimation processes. In this paper, we consider a time-slotted pull-based remote estimation system under a sampling rate constraint where the information source is a general discrete-time Markov chain (DTMC) process. Moreover, packet transmission times from the source to the monitor are non-zero which disallows the monitor to have perfect information on the actual AoII process at any time. Hence, for this pull-based system, we propose the monitor to maintain a sufficient statistic called {\em belief} which stands for the joint distribution of the age and source processes to be obtained from the history of all observations. Using belief, we first propose a maximum a posteriori (MAP) estimator to be used at the monitor as opposed to existing martingale estimators in the literature. Second, we obtain the optimality equations from the belief-MDP (Markov decision process) formulation. Finally, we propose two belief-dependent policies one of which is based on deep reinforcement learning, and the other one is a threshold-based policy based on the instantaneous expected AoII.
Related papers
- Scaling Test-Time Compute Without Verification or RL is Suboptimal [70.28430200655919]
We show that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget.
We corroborate our theory empirically on both didactic and math reasoning problems with 3/8B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
arXiv Detail & Related papers (2025-02-17T18:43:24Z) - Data-driven Bayesian State Estimation with Compressed Measurement of Model-free Process using Semi-supervised Learning [57.04370580292727]
The research topic is: data-driven Bayesian state estimation with compressed measurement (BSCM) of model-free process.
The dimension of the temporal measurement vector is lower than the dimension of the temporal state vector to be estimated.
Two existing unsupervised learning-based data-driven methods fail to address the BSCM problem for model-free process.
We develop a semi-supervised learning-based DANSE method, referred to as SemiDANSE.
arXiv Detail & Related papers (2024-07-10T05:03:48Z) - Learning Algorithms for Verification of Markov Decision Processes [20.5951492453299]
We present a general framework for applying learning algorithms to the verification of Markov decision processes (MDPs)
The presented framework focuses on probabilistic reachability, which is a core problem in verification.
arXiv Detail & Related papers (2024-03-14T08:54:19Z) - Off-Policy Evaluation in Markov Decision Processes under Weak
Distributional Overlap [5.0401589279256065]
We re-visit the task of off-policy evaluation in Markov decision processes (MDPs) under a weaker notion of distributional overlap.
We introduce a class of truncated doubly robust (TDR) estimators which we find to perform well in this setting.
arXiv Detail & Related papers (2024-02-13T03:55:56Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Time-Synchronized Full System State Estimation Considering Practical Implementation Challenges [0.15978270011184256]
We propose a Deep Neural network-based State Estimator (DeNSE) to overcome this problem.
The DeNSE employs a Bayesian framework to indirectly combine inferences drawn from slow timescale but widespread supervisory control and data acquisition (SCADA) data with fast timescale.
The results obtained using the IEEE 118-bus system show the superiority of the DeNSE over a purely SCADA state estimator and a PMU-only linear state estimator from a techno-economic viability perspective.
arXiv Detail & Related papers (2022-12-04T02:59:32Z) - Magic determines the hardness of direct fidelity estimation [0.0]
We show how the resource theory of magic quantifies the hardness of direct fidelity estimation protocols.
We extend our results to quantum evolutions, showing that the resources needed to certify the quality of the implementation of a given unitary $U$ are governed by the magic in the Choi state associated with $U$.
arXiv Detail & Related papers (2022-04-06T18:00:02Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
We present a novel planning method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states.
We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP)
arXiv Detail & Related papers (2021-10-25T06:18:55Z) - Universal Off-Policy Evaluation [64.02853483874334]
We take the first steps towards a universal off-policy estimator (UnO)
We use UnO for estimating and simultaneously bounding the mean, variance, quantiles/median, inter-quantile range, CVaR, and the entire cumulative distribution of returns.
arXiv Detail & Related papers (2021-04-26T18:54:31Z) - Neural Methods for Point-wise Dependency Estimation [129.93860669802046]
We focus on estimating point-wise dependency (PD), which quantitatively measures how likely two outcomes co-occur.
We demonstrate the effectiveness of our approaches in 1) MI estimation, 2) self-supervised representation learning, and 3) cross-modal retrieval task.
arXiv Detail & Related papers (2020-06-09T23:26:15Z) - Batch Stationary Distribution Estimation [98.18201132095066]
We consider the problem of approximating the stationary distribution of an ergodic Markov chain given a set of sampled transitions.
We propose a consistent estimator that is based on recovering a correction ratio function over the given data.
arXiv Detail & Related papers (2020-03-02T09:10:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.