Neuropsychology and Explainability of AI: A Distributional Approach to the Relationship Between Activation Similarity of Neural Categories in Synthetic Cognition
- URL: http://arxiv.org/abs/2411.07243v1
- Date: Wed, 23 Oct 2024 05:27:09 GMT
- Title: Neuropsychology and Explainability of AI: A Distributional Approach to the Relationship Between Activation Similarity of Neural Categories in Synthetic Cognition
- Authors: Michael Pichat, Enola Campoli, William Pogrund, Jourdan Wilson, Michael Veillet-Guillem, Anton Melkozerov, Paloma Pichat, Armanush Gasparian, Samuel Demarchi, Judicael Poumay,
- Abstract summary: We propose an approach to explainability of artificial neural networks that involves using concepts from human cognitive tokens.
We show that the categorical segment created by a neuron is actually the result of a superposition of categorical sub-dimensions within its input vector space.
- Score: 0.11235145048383502
- License:
- Abstract: We propose a neuropsychological approach to the explainability of artificial neural networks, which involves using concepts from human cognitive psychology as relevant heuristic references for developing synthetic explanatory frameworks that align with human modes of thought. The analogical concepts mobilized here, which are intended to create such an epistemological bridge, are those of categorization and similarity, as these notions are particularly suited to the categorical "nature" of the reconstructive information processing performed by artificial neural networks. Our study aims to reveal a unique process of synthetic cognition, that of the categorical convergence of highly activated tokens. We attempt to explain this process with the idea that the categorical segment created by a neuron is actually the result of a superposition of categorical sub-dimensions within its input vector space.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Neuropsychology of AI: Relationship Between Activation Proximity and Categorical Proximity Within Neural Categories of Synthetic Cognition [0.11235145048383502]
This study focuses on synthetic neural cog nition as a new type of study object within cognitive psychology.
The goal is to make artificial neural networks of language models more explainable.
This approach involves transposing concepts from cognitive psychology to the interpretive construction of artificial neural cognition.
arXiv Detail & Related papers (2024-10-08T12:34:13Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Rejecting Cognitivism: Computational Phenomenology for Deep Learning [5.070542698701158]
We propose a non-representationalist framework for deep learning relying on a novel method: computational phenomenology.
We reject the modern cognitivist interpretation of deep learning, according to which artificial neural networks encode representations of external entities.
arXiv Detail & Related papers (2023-02-16T20:05:06Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks.
Neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks.
arXiv Detail & Related papers (2021-04-14T18:10:34Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
The nervous system of the nematode Caenorhabditis elegans exhibits remarkable complexity despite the worm's small size.
A general challenge is to better understand the relationship between neural organization and neural activity at the system level.
We implemented an abstract simulation model of the C. elegans connectome that approximates the neurotransmitter identity of each neuron.
arXiv Detail & Related papers (2020-10-28T23:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.