論文の概要: SPDIM: Source-Free Unsupervised Conditional and Label Shift Adaptation in EEG
- arxiv url: http://arxiv.org/abs/2411.07249v4
- Date: Thu, 28 Nov 2024 20:49:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:15:16.011608
- Title: SPDIM: Source-Free Unsupervised Conditional and Label Shift Adaptation in EEG
- Title(参考訳): SPDIM:脳波の非教師付き条件とラベルシフト適応
- Authors: Shanglin Li, Motoaki Kawanabe, Reinmar J. Kobler,
- Abstract要約: 非定常脳波(EEG)は、領域間での分布変化(例えば、日と被験者)をもたらす
対象ドメインに対するラベル付きキャリブレーションデータがない場合、問題はソースフリーな教師なしドメイン適応(SFUDA)問題である。
本稿では,ラベルシフトを含む特定の分布シフトの下でのSFUDA問題に対する幾何学的深層学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.002670452103349
- License:
- Abstract: The non-stationary nature of electroencephalography (EEG) introduces distribution shifts across domains (e.g., days and subjects), posing a significant challenge to EEG-based neurotechnology generalization. Without labeled calibration data for target domains, the problem is a source-free unsupervised domain adaptation (SFUDA) problem. For scenarios with constant label distribution, Riemannian geometry-aware statistical alignment frameworks on the symmetric positive definite (SPD) manifold are considered state-of-the-art. However, many practical scenarios, including EEG-based sleep staging, exhibit label shifts. Here, we propose a geometric deep learning framework for SFUDA problems under specific distribution shifts, including label shifts. We introduce a novel, realistic generative model and show that prior Riemannian statistical alignment methods on the SPD manifold can compensate for specific marginal and conditional distribution shifts but hurt generalization under label shifts. As a remedy, we propose a parameter-efficient manifold optimization strategy termed SPDIM. SPDIM uses the information maximization principle to learn a single SPD-manifold-constrained parameter per target domain. In simulations, we demonstrate that SPDIM can compensate for the shifts under our generative model. Moreover, using public EEG-based brain-computer interface and sleep staging datasets, we show that SPDIM outperforms prior approaches.
- Abstract(参考訳): 脳電図(EEG)の非定常的な性質は、領域間(例えば、日と主題)の分布シフトを導入し、脳波に基づく神経テクノロジーの一般化に重大な課題を生んでいる。
対象ドメインに対するラベル付きキャリブレーションデータがない場合、問題はソースフリーな教師なしドメイン適応(SFUDA)問題である。
定値分布を持つシナリオに対しては、対称正定値(SPD)多様体上のリーマン幾何学的統計アライメントフレームワークは最先端と見なされる。
しかし、脳波ベースの睡眠ステージングを含む多くの実践シナリオはラベルシフトを示す。
本稿では,ラベルシフトを含む特定の分布シフトの下でのSFUDA問題に対する幾何学的深層学習フレームワークを提案する。
本研究では, SPD多様体上のリーマン統計アライメント手法が, ラベルシフトによる一般化を損なうことなく, 特定の境界分布シフトと条件分布シフトを補償できることを示す。
そこで本研究では,SPDIMと呼ばれるパラメータ効率のよい最適化手法を提案する。
SPDIMは情報最大化原理を用いて、ターゲット領域毎に単一のSPD-manifold-constrainedパラメータを学習する。
シミュレーションでは、SPDIMが生成モデルの下でのシフトを補うことができることを示した。
さらに、パブリックな脳波ベースの脳-コンピュータインタフェースと睡眠ステージデータセットを用いて、SPDIMが従来のアプローチより優れていることを示す。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - SPDE priors for uncertainty quantification of end-to-end neural data
assimilation schemes [4.213142548113385]
ディープラーニングコミュニティの最近の進歩は、データ同化変動フレームワークを組み込んだニューラルネットワークとしてこの問題に対処する上で有効である。
本研究では、SPDEに基づくプロセスから、空間と時間の両方で非定常共分散を扱える事前モデルを推定する。
我々のニューラル変分法は、両方の状態SPDEパラメトリゼーションによる拡張状態定式化を組み込むように修正されている。
論文 参考訳(メタデータ) (2024-02-02T19:18:12Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
ディープラーニングモデルを特定の対象個人に適用することは、難しい表情認識タスクである。
本稿では、FERにおける主観的ドメイン適応のための新しいMSDA手法を提案する。
複数の情報源からの情報を効率的に利用して、ディープFERモデルを単一のターゲット個人に適応させる。
論文 参考訳(メタデータ) (2023-12-09T18:40:37Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
ソースデータがない場合、異なるドメイン間の知識伝達に対処するために、ソースフリードメイン適応(SFDA)が導入された。
教師なしのFDAでは、多様性はソース上の1つの仮説を学習するか、共有された特徴抽出器で複数の仮説を学習することに限定される。
本稿では,異なる特徴抽出器を用いて表現多様性を促進する新しい無教師付きSFDAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-06T00:20:19Z) - SPD domain-specific batch normalization to crack interpretable
unsupervised domain adaptation in EEG [25.642435946325925]
現在のEEG技術は、高価な教師付き再校正なしでは、ドメイン間でうまく一般化しない。
SPDドメイン固有の運動量バッチ正規化(SPDDSMBN)を示す幾何学的深層学習のための新しいビルディングブロックを提案する。
SPDDSMBNレイヤはドメイン固有のSPD入力をドメイン不変のSPD出力に変換することができ、マルチソース/ターゲットおよびオンラインUDAシナリオに容易に適用できる。
論文 参考訳(メタデータ) (2022-06-02T22:31:36Z) - Deep Optimal Transport for Domain Adaptation on SPD Manifolds [9.552869120136005]
ニューロイメージングデータは、対称性と正の定性という数学的性質を持っている。
従来の領域適応法の適用は、これらの数学的性質が破壊される可能性があるため、困難である。
本稿では,境界分布と条件分布の差分を管理するための幾何学的深層学習に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-15T03:13:02Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。