論文の概要: Multi-hop Upstream Preemptive Traffic Signal Control with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2411.07271v1
- Date: Sun, 10 Nov 2024 16:28:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:37.445337
- Title: Multi-hop Upstream Preemptive Traffic Signal Control with Deep Reinforcement Learning
- Title(参考訳): 深層強化学習を用いたマルチホップアップストリームプリエンプティブ交通信号制御
- Authors: Xiaocan Li, Xiaoyu Wang, Ilia Smirnov, Scott Sanner, Baher Abdulhai,
- Abstract要約: 交通信号制御は都市ネットワークにおける混雑管理に不可欠である。
既存の圧力に基づく制御手法は、即座に上流のリンクにのみ焦点を合わせ、最適のグリーン時間割当とネットワーク遅延の増加につながる。
本稿では,マルチホップ上流圧力というマルコフ連鎖理論に基づく新しい概念を紹介し,直近の上流リンクを超える交通条件を考慮に入れた従来の圧力を一般化する。
- 参考スコア(独自算出の注目度): 24.687845741167884
- License:
- Abstract: Traffic signal control is crucial for managing congestion in urban networks. Existing myopic pressure-based control methods focus only on immediate upstream links, leading to suboptimal green time allocation and increased network delays. Effective signal control, however, inherently requires a broader spatial scope, as traffic conditions further upstream can significantly impact traffic at the current location. This paper introduces a novel concept based on the Markov chain theory, namely multi-hop upstream pressure, that generalizes the conventional pressure to account for traffic conditions beyond the immediate upstream links. This farsighted and compact metric informs the deep reinforcement learning agent to preemptively clear the present queues, guiding the agent to optimize signal timings with a broader spatial awareness. Simulations on synthetic and realistic (Toronto) scenarios demonstrate controllers utilizing multi-hop upstream pressure significantly reduce overall network delay by prioritizing traffic movements based on a broader understanding of upstream congestion.
- Abstract(参考訳): 交通信号制御は都市ネットワークにおける混雑管理に不可欠である。
既存の筋圧に基づく制御手法は、即座に上流のリンクにのみ焦点を合わせ、最適なグリーン時間割当とネットワーク遅延の増加につながる。
しかし、信号制御は本質的に広い空間範囲を必要とするため、上流の交通条件が現在の場所の交通に大きな影響を及ぼす可能性がある。
本稿では,マルチホップ上流圧力というマルコフ連鎖理論に基づく新しい概念を紹介し,直近の上流リンクを超える交通条件を考慮に入れた従来の圧力を一般化する。
この遠視的かつコンパクトなメトリクスは、深層強化学習エージェントに現在のキューをプリエンプティブにクリアするよう通知し、エージェントにより広い空間認識で信号タイミングを最適化するよう指示する。
マルチホップ上流圧力を用いた合成および現実的(トロント)シナリオのシミュレーションでは、上流の渋滞のより広範な理解に基づいて、トラフィックの移動を優先順位付けすることにより、ネットワーク全体の遅延を著しく低減する。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
無線ネットワーク制御システム(Wireless Networked Control Systems, WNCS)は、ドローン群や自律ロボットなどのアプリケーションにおいて柔軟な制御を可能にする産業用4.0に必須である。
本稿では,マルチ状態マルコフブロックフェーディングチャネル上で限られた無線リソースを共有するセンサやアクチュエータを用いて,複数の制御ループ間の相関ダイナミクスを捕捉する実用的WNCSモデルを提案する。
本研究では,ハイブリッドな動作空間を効率的に処理し,通信制御の相関関係を捉え,疎域変数や浮動小数点制御の入力に拘わらず堅牢なトレーニングを確実にするDeep Reinforcement Learning (DRL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-15T06:28:21Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
交通信号制御システム(TSCS)は、インテリジェントな交通管理に不可欠なものであり、効率的な車両の流れを育んでいる。
従来のアプローチでは、道路網を標準的なグラフに単純化することが多い。
本稿では,インテリジェントトラフィック制御を実現するための新しいTSCSフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T02:46:18Z) - A Novel Multi-Agent Deep RL Approach for Traffic Signal Control [13.927155702352131]
都市ネットワークにおける複数の交通信号制御のための Friend-Deep Q-network (Friend-DQN) アプローチを提案する。
特に、複数のエージェント間の協調は状態-作用空間を減少させ、収束を加速させる。
論文 参考訳(メタデータ) (2023-06-05T08:20:37Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Area-wide traffic signal control based on a deep graph Q-Network (DGQN)
trained in an asynchronous manner [3.655021726150368]
強化学習(RL)アルゴリズムは交通信号研究に広く応用されている。
しかし,大規模交通ネットワークにおける信号機の共同制御にはいくつかの問題がある。
論文 参考訳(メタデータ) (2020-08-05T06:13:58Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
適応的な交通信号制御のスケーリングには、状態と行動空間を扱う必要がある。
本稿では,グラフ畳み込みネットワークに基づくインダクティブグラフ強化学習(IG-RL)を紹介する。
我々のモデルは、新しい道路網、交通分布、交通体制に一般化することができる。
論文 参考訳(メタデータ) (2020-03-06T17:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。