論文の概要: Multi-hop Upstream Anticipatory Traffic Signal Control with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2411.07271v2
- Date: Thu, 16 Jan 2025 21:09:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:58:00.366918
- Title: Multi-hop Upstream Anticipatory Traffic Signal Control with Deep Reinforcement Learning
- Title(参考訳): 深層強化学習を用いたマルチホップ上流予測信号制御
- Authors: Xiaocan Li, Xiaoyu Wang, Ilia Smirnov, Scott Sanner, Baher Abdulhai,
- Abstract要約: 交通信号制御のコーディネーションは,都市ネットワークにおける混雑管理に不可欠である。
我々の研究はマルコフ連鎖理論に基づく新しい概念、すなわちテクティットマルチホップ上流圧力を導入している。
この遠視的かつコンパクトなメトリクスは、深層強化学習エージェントにマルチホップアップストリームキューをプリエンプティブにクリアするように通知する。
- 参考スコア(独自算出の注目度): 24.687845741167884
- License:
- Abstract: Coordination in traffic signal control is crucial for managing congestion in urban networks. Existing pressure-based control methods focus only on immediate upstream links, leading to suboptimal green time allocation and increased network delays. However, effective signal control inherently requires coordination across a broader spatial scope, as the effect of upstream traffic should influence signal control decisions at downstream intersections, impacting a large area in the traffic network. Although agent communication using neural network-based feature extraction can implicitly enhance spatial awareness, it significantly increases the learning complexity, adding an additional layer of difficulty to the challenging task of control in deep reinforcement learning. To address the issue of learning complexity and myopic traffic pressure definition, our work introduces a novel concept based on Markov chain theory, namely \textit{multi-hop upstream pressure}, which generalizes the conventional pressure to account for traffic conditions beyond the immediate upstream links. This farsighted and compact metric informs the deep reinforcement learning agent to preemptively clear the multi-hop upstream queues, guiding the agent to optimize signal timings with a broader spatial awareness. Simulations on synthetic and realistic (Toronto) scenarios demonstrate controllers utilizing multi-hop upstream pressure significantly reduce overall network delay by prioritizing traffic movements based on a broader understanding of upstream congestion.
- Abstract(参考訳): 交通信号制御のコーディネーションは,都市ネットワークにおける混雑管理に不可欠である。
既存の圧力に基づく制御手法は、即座に上流のリンクにのみ焦点を合わせ、最適のグリーン時間割当とネットワーク遅延の増加につながる。
しかし、上流交通の影響は下流の交差点における信号制御の決定に影響を与え、交通ネットワークの広い領域に影響を及ぼす。
ニューラルネットワークに基づく特徴抽出を用いたエージェントコミュニケーションは、空間的認識を暗黙的に向上させるが、学習の複雑さを著しく増加させ、深層強化学習における制御の困難なタスクに、さらなる難易度を付加する。
学習複雑性と筋電図による交通圧定義の問題に対処するため,本研究ではマルコフ連鎖理論に基づく新しい概念,すなわち「textit{multi-hop upstream pressure}」を導入する。
この遠視的かつコンパクトなメトリクスは、深層強化学習エージェントにマルチホップ上流キューをプリエンプティブにクリアするよう通知し、エージェントにより広い空間認識で信号タイミングを最適化するよう指示する。
マルチホップ上流圧力を用いた合成および現実的(トロント)シナリオのシミュレーションでは、上流の渋滞のより広範な理解に基づいて、トラフィックの移動を優先順位付けすることにより、ネットワーク全体の遅延を著しく低減する。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLightは移動中心の深層強化学習を通じて都市交通管理を強化する新しい交通信号制御システムである。
詳細なリアルタイムデータと高度な機械学習技術を活用することで、MoveLightは従来の信号制御手法の限界を克服する。
論文 参考訳(メタデータ) (2024-07-24T14:17:16Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
交通信号制御システム(TSCS)は、インテリジェントな交通管理に不可欠なものであり、効率的な車両の流れを育んでいる。
従来のアプローチでは、道路網を標準的なグラフに単純化することが多い。
本稿では,インテリジェントトラフィック制御を実現するための新しいTSCSフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - A Novel Multi-Agent Deep RL Approach for Traffic Signal Control [13.927155702352131]
都市ネットワークにおける複数の交通信号制御のための Friend-Deep Q-network (Friend-DQN) アプローチを提案する。
特に、複数のエージェント間の協調は状態-作用空間を減少させ、収束を加速させる。
論文 参考訳(メタデータ) (2023-06-05T08:20:37Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Lyapunov Function Consistent Adaptive Network Signal Control with Back
Pressure and Reinforcement Learning [9.797994846439527]
本研究では、それぞれ特定のリャプノフ関数を定義するリアプノフ制御理論を用いた統一的なフレームワークを提案する。
Lyapunov理論の知見に基づいて、この研究は強化学習(Reinforcement Learning, RL)に基づくネットワーク信号制御のための報酬関数を設計する。
提案アルゴリズムは, 純旅客車流および貨物を含む異種交通流下での従来のRL法およびRL法と比較した。
論文 参考訳(メタデータ) (2022-10-06T00:22:02Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。